Effect of high hydrostatic pressure application on the inactivation of Escherichia coli O157:H7 and the volatile profile of passion fruit (Passiflora edulis) juice
DOI:
https://doi.org/10.18633/biotecnia.v27.2427Keywords:
Altas presiones hidrostáticas, Escherichia coli O157:H7, maracuyá, perfil aromático, jugo de frutasAbstract
The effect of high hydrostatic pressure (HHP) on the inactivation of Escherichia coli O157:H7 in passion fruit juice (Passiflora edulis) was determined, some physicochemical and aromatic properties of the inoculated juice were evaluated. A 33 statistical design was used considering pressure, temperature and treatment time as factors (150, 200, 250 MPa; 25, 35, 45 º C; 0, 10, 20 min). A quadratic model was applied to optimize the process conditions using the response surface methodology. E. coli was determined in stocked juice (6 days, 4 ºC). The volatile profile was analyzed using the headspace solid phase microextraction technique (HS-SPME) and (GC-MS). It was observed that from 150 MPa and 35 ºC, E. coli is totally inactivated. The treatments have no effect on the total soluble solids (TSS) of the juice, which suggest acceptability by consumers. Regarding the volatile profile, the alcohols and esters responsible for the aroma characteristic of passion fruit decreased their concentration (16 %) at 45 º C. The optimal conditions to obtain a microbiological safe passion fruit juice, preserving its aromatic composition, TSS and pH are 200 MPa, 35 º C and 10 min.
Downloads
References
Augusto, P.E.D., Tribst, A.A.L. y Cristianini, M. 2018. High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. Fruit Juices. 393-421. https://doi.org/10.1016/B978-0-12-802230-6.00020-5
Benjamin, O. y Gamrasni, D. 2020. Microbial, nutritional, and organoleptic quality of pomegranate juice following high‐pressure homogenization and low‐temperature pasteurization. Journal of food science. 85(3), 592-599. https://doi.org/10.1111/1750-3841.15032
Błaszczak, W., Amarowicz, R. y Górecki, A.R. 2017. Antioxidant capacity, phenolic composition and microbial stability of aronia juice subjected to high hydrostatic pressure processing. Innovative Food Science & Emerging Technologies. 39, 141-147. https://doi.org/10.1016/j.ifset.2016.12.005
Bulut, S. y Karatzas, K.A.G. 2021. Inactivation of Escherichia coli K12 in phosphate buffer saline and orange juice by high hydrostatic pressure processing combined with freezing. Lwt. 136, 110313. https://doi.org/10.1016/j.lwt.2020.110313
Buzrul, S. 2019. High hydrostatic pressure inactivation of microorganisms: A probabilistic model for target log-reductions. International Journal of Food Microbiology. 309, 108330. https://doi.org/10.1016/j.ijfoodmicro.2019.108330
Calderón-Santoyo, M., López-Quintana, G.D., Ramírez-de-León, J.A., Jiménez-Sánchez, D.E. y Ragazzo-Sánchez, J.A. 2019. Effect of the high hydrostatic pressure on aromatic profiles and inactivation of Escherichia coli O157:H7 in mango nectar. Revista Bio Ciencias. 6, 709. doi: https://doi.org/10.15741/revbio.06.e709
Carvalho, F., George, J., Sheikh, H.M.A. y Selvin, R. 2018. Advances in screening, detection and enumeration of Escherichia coli using nanotechnology-based methods: A review. Journal of Biomedical Nanotechnology. 14(5), 829-846. https://doi.org/10.1166/jbn.2018.2549
Castro-Rosas, J., Cerna-Cortés, J.F., Méndez-Reyes, E., Lopez-Hernandez, D., Gómez-Aldapa, C.A. y Estrada-Garcia, T. 2012. Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. International journal of food micro-biology. 156 (2), 176-180. https://doi.org/10.1016/j.ijfoodmicro.2012.03.025
Cazarin, C.B.B., da Silva, J.K., Colomeu, T.C., Batista, Â.G., Meletti, L.M.M., Paschoal, J.A.R., Bogusz Junior, S., Braga, P.A. de C., Reyes, F.G.R., Augusto, F., de Meirelles, L.R., Zollner, R. de L. y Maróstica Júnior, M.R. 2015. Intake of Passiflora edulis leaf extract improves antioxidant and anti-inflammatory status in rats with 2,4,6-trinitrobenzenesulphonic acid induced colitis. Journal of Functional Foods. 17, 575–586. https://doi.org/10.1016/j.jff.2015.05.034
de Souza, V.R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L., Warriner, K. y Koutchma, T. 2020. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies. 64, 102398. https://doi.org/10.1016/j.ifset.2020.102398
Espina, L., García-Gonzalo, D., Laglaoui, A., Mackey, B.M., y Pagán, R. 2013. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology. 161(1), 23-3. https://doi.org/10.1016/j.ijfoodmicro.2012.11.015
Gohrbandt, M., Lipski, A., Grimshaw, J.W., Buttress, J.A., Baig, Z., Herkenhoff, B., Walter, S., Kurre, R., Deckers-Hebestreit, G. y Strahl, H. 2022. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. The EMBO journal. 41(5), 109800. https://doi.org/10.15252/embj.2021109800
Hereu, A., Dalgaard, P., Garriga, M., Aymerich, T. y Bover-Cid, S. 2014. Analysing and modelling the growth behaviour of Listeria monocytogenes on RTE cooked meat products after a high pressure treatment at 400 MPa. International Journal of Food Microbiology. 186, 84-94. https://doi.org/10.1016/j.ijfoodmicro.2014.06.020
Jordan, M.J., Goodner, K.L. y Shaw, P.E. 2000. Volatile components in tropical fruit essences: yellow passion fruit (Passiflora edulis Sims F. flavicarpa Degner) and banana (Musa sapientum L.). Proceedings of Florida State Horticultural Society. 113, 284-286. ISSN: 0886-7283
Jung, L.S., Lee, H.Y., Lee, S.H., Kim, S. y Ahn, J. 2013. Assessment of pressure-induced inactivation of Listeria monocytogenes exposed to low pHs. Food Science and Biotechnology. 22, 99-105. https://doi.org/10.1007/s10068-013-0014-z
Kim, M.J., Lee, J.I., y Park, S.H. 2024. Enhancing Bactericidal Efficacy of High-Pressure Processing (HPP) Against Foodborne Pathogens: The Role of pH and Mechanistic Insights. Food and Bioprocess Technology. 1-13. https://doi.org/10.1007/s11947-024-03471-4
Lomelí-Martín, A., Martínez, L.M., Welti-Chanes, J. y Escobedo-Avellaneda, Z. 2021. Induced changes in aroma compounds of foods treated with high hydrostatic pressure: A review. Foods. 10(4), 878. https://doi.org/10.3390/foods10040878
Mamede, A.M., Soares, A.G., Oliveira, E.J. y Farah, A. 2017. Volatile composition of sweet passion fruit (Passiflora alata Curtis). Journal of Chemistry. 2017(1), 3497216. https://doi.org/10.1155/2017/3497216
Manassero, C.A., Speroni, F. y Vaudagna, S.R. 2019. High hydrostatic pressure treatment improves physicochemical properties of calcium- and soybean protein-added peach juice. Lwt. 101, 54–60. https://doi.org/10.1016/j.lwt.2018.11.021
Moussa-Ayoub, T.E., Jäger, H., Knorr, D., El-Samahy, S.K., Kroh, L.W. y Rohn, S. 2017. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Science and Technology. 79, 534-542. https://doi.org/10.1016/j.lwt.2016.10.061
Mukhtar, K., Nabi, B.G., Arshad, R.N., Roobab, U., Yaseen, B., Ranjha, M.M.A. N., Aadil, R.M. y Ibrahim, S.A. 2022. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrasonics Sonochemistry. 90, 106194. https://doi.org/10.1016/j.ultsonch.2022.106194
Pokhrel, P.R., Boulet, C., Yildiz, S., Sablani, S., Tang, J. y Barbosa-Cánovas, G.V. 2022. Effect of high hydrostatic pressure on microbial inactivation and quality changes in carrot-orange juice blends at varying pH. LWT. 159, 113219. https://doi.org/10.1016/j.lwt.2022.113219
Porębska, I., Sokołowska, B., Skąpska, S. y Rzoska, S.J. 2017. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control. 73, 24-30. https://doi.org/10.1016/j.foodcont.2016.06.005
Prieto-Calvo, M., Prieto, M., López, M. y Alvarez-Ordóñez, A. 2014. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques. Molecules. 19(12), 21310-21323. https://doi.org/10.3390/molecules191221310
Quiroz-González, B., Rodríguez-Martínez, V., García-Mateos, M. del R., Torres, J.A. y Welti-Chanes, J. 2018. High hydrostatic pressure inactivation and recovery study of Listeria innocua and Saccharomyces cerevisiae in pitaya (Stenocereus pruinosus) juice. Innovative Food Science and Emerging Technologies. 50, 169–173. https://doi.org/10.1016/j.ifset.2018.10.003
Sangronis, E., Pothakamury, U., Ramos, A.M., Ibarz, A., Barbosa-Cánovas, G.V. y Swanson, B.G. 1997. La alta presión hidrostática: una alternativa en el procesamiento no térmico de alimentos. Alimentaria. 283, 33-43. ISSN 0300-5755
Yang, D., Li, R., Dong, P., Rao, L., Wang, Y. y Liao, X. 2023. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Frontiers in Microbiology. 14, 1108194. https://doi.org/10.3389/fmicb.2023.1108194
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.