Valorisation of agroindustrial residues acid hydrolyzates as carbon sources for ethanol production by native yeast strains with different fermentative capabilities//Valorización de hidrolizados ácidos de residuos agroindustriales como fuente de carbono para la producción de etanol por levaduras nativas con capacidades fermentativas diferentes
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1248Palabras clave:
corn stover, mango residue, hemicellulose, pentose fermenting yeast, bioethanolResumen
A profitable, second-generation (2G) bioethanol production process requires the use of the maximum amountof sugars present in the lignocellulosic biomass; among them are those obtained from hemicellulose hydrolysis. An alternative is the search and kinetic characterization of yeasts capable of fermenting xylose to ethanol. In this study, 161 yeasts were isolated from agroindustrial residues, and selected according to best growth in glucose and xylose. Five strains belonging to the genera Candida (C. intermedia and C. parapsilosis), and Wickerhamomyces (W. anomalus) were molecularly identified. The kinetic parameters indicate that C. intermedia CBE002 had the best biomass yield in glucose and xylose (0.21 and 0.35 g/g of substrate), maximum specific growth rate (0.15 and 0.12 h-1) and metabolized both sugars simultaneously, desirable characteristics and rarely found together in other yeasts. Bioethanol production was made possible by C. intermedia (CBE002) from acid hydrolysates of corn stover and mango residues, with yields of 0.31 and 0.26 g/g of substrate, respectively. From the results obtained, this yeast is an attractive candidate to be used in bioethanol 2G production, and to take advantage of the large amount of agroindustrial residues available.
RESUMEN
Un proceso de producción de bioetanol de segunda generación (2G) rentable, requiere el uso del máximo número de azúcares presentes en la biomasa lignocelulósica, como son los obtenidos por hidrólisis de hemicelulosa; para obtenerlo, una alternativa es encontrar levaduras capaces de fermentar eficientemente xilosa a etanol. En el presente trabajo se realizó el aislamiento de 161 levaduras a partir de residuos agroindustriales, se evaluó su capacidad de crecimiento en glucosa y xilosa. Se seleccionaron e identificaron molecularmente cinco de estas cepas pertenecientes a los géneros Candida (C. intermedia, C. parapsilosis) y Wickerhamomyces (W. anomalus). Los parámetros cinéticos demostraron que C. intermedia CBE002 obtuvo el mejor rendimiento de biomasa en glucosa y xilosa (0.21 y 0.35 g/g), la máxima velocidad específica de crecimiento (0.15 y 0.12 h-1) y fue capaz de metabolizar ambos azúcares simultáneamente, característica deseable y poco encontrada en otras levaduras. Fue posible la producción de bioetanol por C. intermedia CBE002 a partir de hidrolizados ácidos de rastrojo de maíz y residuos de mango, con rendimientos de 0.31 y 0.26 g/g de sustrato, respectivamente. Por lo anterior, esta levadura es atractiva para ser empleada en la producción de bioetanol 2G y aprovechar la gran cantidad de residuos agroindustriales disponibles.
Descargas
Citas
Bazoti, S.F., Golunski, S., Pereira Siqueira, D., Scapini, T., Barrilli, E.T., Mayer, D.A., Barros, K.O., Rosa, C.R., Stambuke, B.U., Alves, S., Valerio, A., de Oliveira, A. and Treichel, H. 2017. Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology. 244: 582-587. DOI:10.1016/j.biortech.2017.08.007.
Bellasio, M., Mattanovich, D., Sauer, M. and Marx, H. 2015. Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory. Journal of Industrial Microbiology and Biotechnology. 42: 681-691. DOI:10.1371/journal.pone.0202164.
Cai, Z., Zhang, B. and Li, Y. 2012. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnology Journal. 7: 34-46. DOI:10.1002/biot.201100053.
Chandel, A.K. and Singh, O.V. 2011. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Applied Microbiology and Biotechnology. 89: 1289-1303. DOI:10.1007/s00253-010-3057-6.
Chandel, A.K., Garlapati, V.K., Singh, A.K., Fernandes-Antunes, F.A. and da Silva, S. 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresource Technology. 264: 370-381. DOI: 10.1016/j.biortech.2018.06.004.
De Becze, G.I. 1956. Yeasts: I. Morphology. Applied and Environmental Microbiology. 4: 1-12.
Dubey, R., Jakeer, S. and Gaur, N.A. 2016. Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production. Journal of Bioscience and Bioengineering. 121: 509-516. DOI:10.1016/j.jbiosc.2015.09.006.
Elahi, A. and Rehman, A. 2018. Bioconversion of hemicellulosic materials into ethanol by yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste. Revista Argentina de Microbiologia. 50: 417-425. DOI:10.1016/j.ram.2017.07.008.
Fernández-López, C.L., Torrestiana-Sánchez, B., Salgado-Cervantes, M.A., Mendoza-García, P.G. and Aguilar-Uscanga, M.G. 2012. Use of sugarcane molasses ‘‘B’’ as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations. Bioprocess and Biosystems Engineering. 35: 605-614. DOI:10.1007/s00449-011-0633-9.
Gancedo, J.M. 1998 Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews. 62: 334-361.
Gardonyi, M., Osterberg, M., Rodrigues, C., Spencer-Martins, I. and Hahn-Hagerdal, B. 2003. High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Research. 3:45-52. DOI:10.1111/j.1567-1364.2003.tb00137.x.
Ge, J., Du, R., Song, G., Zhang, Y. and Ping, W. 2017. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7. Journal of Bioscience and Bioengineering. 124: 386-391. DOI:10.1016/j.jbiosc.2017.04.01.
Ghosh, S., Chowdhury, R. and Bhattacharya, P. 2017. Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes. Applied Energy: 198: 284-298. DOI:10.1016/j.apenergy.2016.12.091.
Inokuma, K., Iwamoto, R., Bamba, T., Hasunuma, T. and Kondo, A. 2017. Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique. Frontiers in Bioengineering and Biotechnology. 5: 81. DOI:10.3389/fbioe.2017.00081.
Kaltschmitt, M. 2018. Energy from Organic Materials (Biomass). In: The Encyclopedia of Sustainability Science and Technology. R.A. Meyers (ed.), pp. 1445. Springer Nature, Alemania.
Keating, J.D., Panganiban, C. and Mansfield, S.D. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering. 93: 1196-1206. DOI:10.1002/bit.20838.
Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y. and Fujimori, K.E. 2018. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express. 8: 139. DOI:10.1186/s13568-018-0670-8.
Kwak, S. and Jin, Y.S. 2017. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial Cell Factories. 16: 82. DOI:10.1186/s12934-017-0694-9.
Lange, H., Bavouzet, J.M., Taillandier, P. and Delorme, C. 1993. Systematic error and comparison of four methods for assessing the viability of Saccharomyces cerevisiae suspensions. Biotechnology Techniques. 7: 223-228. DOI: 10.1007/BF02566152.
Lange, J., Muller, F., Takors R. and Blombach, B. 2017. Harnessing novel chromosomal integration loci to utilize an organosolvderived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microbial Biotechnology. 11: 257-263. DOI:10.1111/1751-7915.12879.
Leandro, M.J., Goncalves, P. and Spencer-Martins, I. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochemical Journal. 395: 543-549. DOI: 10.1042/ BJ20051465.
Martins, G.M, Bocchini-Martins, D.A., Bezzerra-Bussoli, C., Pagnocca, F.C., Boscolo, M., Alves-Monteiro, D., da Silva, R. and Gomes, E. 2018. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Brazilian Journal of Microbiology. 49: 162-168. DOI:10.1016/j. bjm.2016.11.014.
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31: 426-428. DOI:10.1021/ac60147a030.
Miret, C., Chazara, P., Montastruc, L., Negny, S. and Domenech, S. 2016. Design of bioethanol green supply chain: Comparison between first and second generation biomass concerning economic, environmental and social criteria. Computers and Chemical Engineering. 85: 16-35. DOI:10.1016/j.compchemeng.2015.10.008.
Mohd Azhar, S.H., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J.A., Mohd Faik, A.A. and Rodrigues, K.F. 2017. Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports. 10: 52-61. DOI:10.1016/j.bbrep. 2017.03.003.
Moreno, A.D., Carbone, A., Pavone, R., Olsson, L. and Geijer, C. 2019. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Applied Microbiology and Biotechnology. 103: 1405-1416. DOI: 10.1007/s00253-018-9528-x.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M. and Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96: 673-686. DOI:10.1016/j.biortech. 2004.06.025.
Moyses, D.N., Reis, V.C., Moreira de Almeida, J.R., Pepe de Moraes, L.M. and Goncalves Torres, F. 2016. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. International Journal of Molecular Sciences. 17: 207. DOI: 10.3390/ijms17030207.
Muruaga, M.L, Carvalho, K.G., Dominguez, J.M., de Souza-Oliveira, R.P. and Perotti, N. 2016. Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor. Renewable Energy. 85: 649-656. DOI:10.1016/j.renene.2015.07.008.
Mussatto, S.I., Machado, M.S., Carneiro, L.M. and Teixeira, J.A. 2012. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy. 92: 763-768. DOI:10.1016/j.apenergy. 2011.08.020.
Novy, V., Krahulec, S., Wegleiter, M., Muller, G., Longus, K., Klimacek, M. and Nidetzky, B. 2014. Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels. 7: 49. DOI: 10.1186/1754-6834-7-49.
Novy, V., Brunner, B. and Nidetzky, B. 2018. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microbial Cell Factories. 17: 59. DOI: 10.1186/s12934-018-0905-z.
Ortiz-Zamora, O., Cortes-García, R., Ramírez-Lepe, M., Gómez- Rodríguez, J. and Aguilar-Uscanga, M.G. 2009. Isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico. Journal of Food Process Engineering. 32: 775-786. DOI:10.1111/j.1745-4530.2008.00244.x.
Pandiyan, K., Singh, A., Singh, S., Saxena, A.K. and Nain, L. 2019. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy. 132: 723-741. DOI: 10.1016/j.renene.2018.08.049.
Pérez-Cadena, R., Medina-Moreno, S.A., Martínez, A., Lizardi-Jiménez, M.A., Espinosa-Solares, T. and Télez-Jurado, A. 2018. Effect of concentration of salts in ethanol production from acid hydrolysis of cladodes of Opuntia ficus indica var. Atlixco. Revista Mexicana de Ingenieria Quimica. 17: 349-365. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/PerezR.
Prasad, D., Singla, A. and Negi, S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3Biotech. 5: 597-609. DOI:10.1007/s13205-015-0279-4.
Rastogi, M. and Shrivastava, S. 2017. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews. 80: 330-340. DOI:10.1016/j.rser.2017.05.225.
Santana, N.B., Teixeira Dias, J.C., Rezende, P.R., Franco, M., Silva Oliveira, L.K. and Oliveira Souza, L. 2018. Production of xilitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE. 13: e0195206. DOI:10.1371/journal.pone.0195206.
Schirmer-Michel, A.C., Hickmann, S., Hertz, P.H., Souza-Matos, G. and Zachia-Ayub, M.A. 2008. Production of etanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technology. 99: 2898-2904. DOI:10.1016/j.biortech.2007.06.042.
Selim, K.A, El-Ghwas, D.E., Easa, S. and Hassan M.A. 2018. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. Fermentation. 4: 16. DOI:10.3390/fermentation4010016.
Shariq, M. and Sohail, M. 2018. Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. Journal of King Saud University DOI:10.1016/j.jksus.2018.04.009..
Smith, J., van Rensburg, E. and Gorgens, J.F. 2014. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology. 14: 41. DOI:10.1186/1472-6750-14-41.
Subtil, T. and Boles, E. 2011. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnology for Biofuels. 4: 38. DOI: 10.1186/1754-6834-4-38.
Sumphanwanich, J., Leepipatpiboon, N., Srinorakutara, T. and Akaracharanya, A. 2008. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Annals of Microbiology. 58: 219-225. DOI: 10.1007/BF03175320.
Tian, S.Q., Zhao, R.Y. and Chen, Z.C. 2018. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews: 91: 483-489. DOI: 10.1016/j.rser.2018.03.113.
Van Vleet, J.H. y Jeffries, T.W. 2009. Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology. 20: 300-306. DOI:10.1016/j.copbio.2009.06.001.
Viikari, L., Vehmaanpera, J. and Koivula, A. 2012. Lignocellulosic ethanol: From science to industry. Biomass and Bioenergy: 46: 13-24. DOI:10.1016/j.biombioe.2012.05.008.
Vilela, L. de F., de Araujo, V.P., Paredes, R. de S., Bon, E.P., Torres, F.A., Neves, B.C. and Eleutherio, E.C. 2015. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express. 26: 5-16. DOI: 10.1186/s13568-015-0102-y.
Wang, C., Zhao, J., Qiu, C., Wang, S., Shen, Y., Du, B., Ding, Y. and Bao, X. 2017. Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering. BioMed Research International. 5318232: 1-10. DOI:10.1155/2017/5318232.
White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols. 315-322.
Wu, G., Xu, Z. and Jonsson, L. J. 2017. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion. Microbial Cell Factories. 16: 199. DOI:0.1186/s12934-017-0811-9.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)