Perfil de metabolitos y capacidad antioxidante de lechuga Lactuca sativa var. Longifolia en cultivo acuapónico irrigado con efluentes camaronícolas

Autores/as

  • Humberto Ramos Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80030, Mexico. https://orcid.org/0000-0003-2557-0440
  • Iza Pérez Programa de Posgrado en Alimentos del Centro de la Republica (PROPAC), Centro Universitario, Universidad Autónoma de Querétaro, Mexico. https://orcid.org/0000-0001-7606-0892
  • Marely Figueroa Universidad Tecnológica de Culiacán. Culiacán Sinaloa 80014, México. https://orcid.org/0000-0002-2617-598X
  • Francisco Fierro Posgrado en Ciencias Agropecuarias, Colegio de Ciencias Agropecuarias, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80000, Mexico. https://orcid.org/0000-0003-4752-6280
  • Armando León Posgrado en Ciencias Agropecuarias, Colegio de Ciencias Agropecuarias, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80000, Mexico. https://orcid.org/0000-0002-5335-5468
  • Suammy Gabriela Posgrado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa 82017, Mexico.
  • C. Reyes-Moreno Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80030, Mexico. https://orcid.org/0000-0003-4577-1629
  • Federico Páez-Osuna Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, Playa Sur, Mazatlán, Sinaloa 82040, Mexico https://orcid.org/0000-0002-1579-817X

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1454

Palabras clave:

Camarón, Litopenaeus vannamei, Cultivo de camarón, Acuaponia

Resumen

Este estudio evalúa la calidad de la lechuga var. longifolia irrigada con efluentes camaronícolas de agua de pozo (WW), agua de mar diluida (DSW) y una solución hidropónica (HS). Los resultados mostraron que WW y DSW disminuyen ligeramente el peso, follaje y rendimiento (5-9%) en las plantas comparado con el control-HS. La lechuga-WW mostró un nivel superior de fenólicos totales (~71%), flavonoides (~90%) y capacidad antioxidante (0.7-3-veces) que las plantas-HS, principalmente en la fracción soluble. La lechuga WW mostró un contenido mayor de sólidos soluble totales (~16%) y, menor saturación de color, el cual se correlacionó (p <0.05) con la clorofila a. La lechuga-WW exhibió las concentraciones más altas ácidos p-hidroxibenzoico, p-cumárico y ferúlico, así como de quercetina 3-O-glucósido y quercetina 3-O-ramnósido. Mientras que la lechuga-DSW mostró los niveles más altos de ácido cafeico, isorharmentina 3-O-glucosido, kaempferol 3-O-glucosido, kaempferol y quercetina. La lechuga-HS mostró un mayor contenido de prolina que las lechugas de los otros tratamientos. Estos resultados indican que el cultivo aquaponico con efluente camaronícola-WW puede ser usado como una alternativa para reducir los requerimientos de suelo, decrecer o eliminar la descarga e impacto de los efluentes camaronicolas, y simultáneamente mejorar las propiedades funcionales de la lechuga.

Citas

Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. y Hernandez, J.A. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):1–38.

Al-Maskri, A., Al Kharusi, L., Al-Miqbali, H. y Khan, M. 2010. Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology 12(3):377-380.

Anand David, A.V., Arulmoli, R. y Parasuraman, S. 2016. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacological Reviews 10(20):84–89.

AOAC. 1997. Official Methods of Analysis. Association of Official Analytical Chemists, Washington, D.C.

Arnao, M.B., Cano, A., Alcolea, J.F. y Acosta, M. 2001. Estimation of free radical-quenching activity of leaf pigment extracts. Phytochemical Analysis 12(2):138–143.

Ayala-Astorga, G.I. y Alcaraz-Meléndez, L. 2010. Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic Journal of Biotechnology 13(5):13-14.

Bates, L.S., Waldren, R.P. y Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1):205–207.

Brand-Williams, W., Cuvelier, M.E. y Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1):25–30.

Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P. y Shabala, S. 2007. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany 58(15–16): 4245–4255.

Chishaki, N. y Horiguchi, T. 1997. Responses of secondary metabolism in plants to nutrient deficiency. Soil Science and Plant Nutrition 43:987–991.

Covarrubias-Cárdenas, A., Martínez-Castillo, J., Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., García-Cruz, N. y Pacheco, N. 2018. Antioxidant capacity and UPLC-PDA ESI-MS phenolic profile of stevia rebaudiana dry powder extracts obtained by ultrasound assisted extraction. Agronomy 8(9):170.

Fierro-Sañudo, J.F., Rodriguez-Montes de Oca, G. y Páez-Osuna F. 2020. Co-culture of shrimp with commercial plants: a review. Reviews in Aquaculture 12:2411-2428.

Garrido, Y., Tudela, J.A., Marin, A., Mestre, T., Martinez, V. y Gil, M.I. 2014. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. Journal of the Science of Food and Agriculture 94(8):1592–1599.

Hu, L., Yu, W., Li, Y., Prasad, K. y Tang, Z. 2014. Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. BioMed Research International 341291.

Kim, D.O., Chun, O.K., Kim, Y.J., Moon, H.Y. y Lee, C.Y. 2003. Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry 51(22):6509–6515.

Kim, J.E., Lee, D.E., Lee, K.W., Son, J.E., Seo, S.K., Li, J., Jung, S.K., Heo, Y.S., Mottamal, M., Bode, A.M., Dong, Z. y Lee, H.J. 2011. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K. Cancer Prevention Research 4(4):582-591.

León-Cañedo, J.A., Alarcón-Silvas, S.G., Fierro-Sanudo, J.F., Rodríguez-Montes de Oca, G.A., Partida-Ruvalcaba, L., Díaz-Valdés, T. y Páez-Osuna, F. 2019. Mercury and other trace metals in lettuce (Lactuca sativa) grown with two low-salinity shrimp effluents: accumulation and human health risk assessment. Science of the Total Environment 650:2535-2544.

Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H. y Chen, S. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374.

Magdi, T.A., Mervat, S.S., URS, S. y Abdel-Kareem, M.E.S. 2013. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biológica Colombiana 18:499-510.

Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A. y Cerkal, R. 2017. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Sciences 73:40–45.

Materska, M., Olszówka, K., Chilczuk, B., Stochmal, A., Pecio, T., Pacholczyk-Sienicka, B., Piacente, S., Pizza, C. y Masullo, M. 2019. Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. European Food Research and Technology 245: 733–744.

Mehraban, A., Kadali, F., y Miri, M. 2017. Influence of salt stress on lipids metabolism, photorespiration, photosynthesis and chlorophyll fluorescence in crop plants. Chemistry Research Journal 2(3):127–132.

Mora-Rochin, S., Gutiérrez-Uribe, J.A., Serna-Saldivar, S.O., Sánchez-Peña, P., Reyes-Moreno, C. y Milán-Carrillo, J. 2010. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. Journal of Cereal Science 52(3): 502–508.

Páez-Osuna, F. 2001. The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environmental Management 28(1):131–140.

Ramos-Sotelo, H., Valdez-Ortiz, Á., Germán-Báez, L.J., Fierro-Sañudo, J.F., León-Cañedo, J.A., Alarcón-Silvas, S.G., Reyes-Moreno, C. y Páez-Osuna, F. 2019. Quality of lettuce Lactuca sativa (var. Tropicana M1) grown with two low-salinity shrimp effluents. Food Chemistry: X 2:100027.

Ribas-Agusti, A., Gratacos-Cubarsi, M., Sarraga, C., Garcia-Regueiro, J.A. y Castellari, M. 2011. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochemical Analysis 22(6):555–563.

Robbins, R.J. 2003. Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemitry 51(10):2866–2887.

Sharma, V. y Ramawat, K.G. 2013. Salinity-induced modulation of growth and antioxidant activity in the callus cultures of miswak (Salvadora persica). 3 Biotech 3(1): 11–17.

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. y Zheng, B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452.

Shetty, K. 2004. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Process Biochemistry 39(7):789–804.

Descargas

Publicado

2021-09-29

Número

Sección

Artículos