FUNCTIONAL BEVERAGES ELABORATED FROM AMARANTH AND CHIA FLOURS PROCESSED BY GERMINATION AND EXTRUSION

Oscar Daniel Argüelles-López, Cuauhtémoc Reyes-Moreno, Roberto Roberto Gutiérrez-Dorado, María Fernanda Sánchez- Osuna, Jaime López-Cervantes, Edith Oliva Cuevas-Rodríguez, Jorge Milán-Carrillo, Janitzio Xiomara Korina Perales-Sánchez

Resumen


The aims of this research were to develop functional beverages from amaranth and chia flours, processed by germination and extrusion, and evaluate its nutritional, antioxidant and antihypertensive properties. Optimal conditions, previously obtained, to produce extruded (Extrusion temperature= 141 °C/screw speed = 81 rpm) and germinated (Germination temperature= 30 °C/germination time= 78 h.) amaranth flours (EAF, GAF) were applied. Optimal conditions of germination temperature (29 °C) and germination time (197 h) to elaborate germinated chia flour (GCF), with maximum values of antioxidant activity, total phenolic and protein contents, were obtained. A 200 mL portion of the functional beverages, elaborated with 25 g of 70 % EAF+ 30% GCF or 70 % GAF + 30 % GCF mixtures, had 3.90-4.53 g protein, 5.04-6.81 g dietary fiber, 95-96 kcal of energy, calculated protein efficiency ratio = 2.52-2.69, antioxidant activity= 4,009-6,495 μmol TE, antihypertensive potential (IC50) = 0.43-0.47 μg extract/mL, and sensorial acceptability between “I like it very much” and “I like it extremely”. These functional beverages, due to its high nutritional value, and antioxidant and antihypertensive potential, can be used for health promotion of consumers.


Palabras clave


Amaranth; chia; functional beverages; antioxidant activity; antihypertensive potential.

Texto completo:

PDF (English)

Referencias


Ademiluyi, A.O. and Oboh, G. 2013. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65: 305-309.

Al-Shukor, N., Van-Camp, J., Gonzales, G.B., Staljanssens, D., Struijs, K., Zotti, M.J., Raes, K. and Smagghe, G. 2013.nAngiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships. Journal of Agricultural and Food Chemistry, 61: 11832−11839.

Alvarez-Jubete, L., Arendt, E.K. and Gallagher, E. 2010. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21: 106-113.

Amare, E., Mouquet-Rivier, Adrien Servent, A., Morel, G., Adish, A. and Haki, G.D. 2015. Protein Quality of Amaranth Grains Cultivated in Ethiopia as Affected by Popping and Fermentation. Food and Nutrition Sciences, 6: 38-48.

AOAC. 1999. Official Methods of Analysis 16° ed. Harla, Association of Official Analytical Chemists, St. Paul, USA.

Arenas-Carvajal, R., Pachón-Gómez, E., Méndez-Callejas, G. and Guzmán-Avendaño, A. 2009. Estudio del efecto inhibitorio de extractos de Salvia scutellarioides sobre la actividad de la enzima convertidora de angiotensina. Universitas SCIENTIARUM, 14: 141-150.

Asao, M. and Watanabe, K. 2010. Functional and bioactive properties of quinoa and amaranth. Food Science and Technology Research, 16: 163-168.

Barrera-Cruz, A., Rodríguez-González, A. and Molina-Ayalab, M.A. 2013. Escenario actual de la obesidad en México. Revista Médica del Instituto Mexicano del Seguro Social, 51:292-299.

Cardello, A.V. and Schutz, H.G. 2004. Research note numerical scale-point locations for constructing the LAM (labeled affective magnitude) scale. Journal of Sensory Studies, 19: 341-346.

Corbo, M.R., Bevilacqua, A., Petruzzi, L., Casanova, F.P. and Sinigaglia, M. 2014. Functional beverages: The emerging side of functional foods. Commercial trends, research, and health implications. Comprehensive Reviews in Food Science and Food Safety, 13:1192-1206.

Dawood, M., Sadak, M., Rayad, B.Y., El-Sayed, A.S.M. and El- Gayar, S.H. 2013. Changes in chemical composition during germination of some canola varieties Changes in oil content and fatty acid composition. Scientia Agriculturae 2:77-82.

Duodu, K.G. 2014. Effects of processing on phenolic phytochemicals in cereals and legumes. Cereal Foods World, 59: 64-70.

Elizalde, A.D., Porrilla, Y.P. and Chaparro, D.C.C. 2009. Antinutritional factors in eatable seeds. Facultad de Ciencias Agropecuarias, 7: 45-54.

Espinoza-Moreno, R.J., Reyes-Moreno, C., Milán-Carrillo, J., López-Valenzuela J.A., Paredes-López, O. and Gutiérrez- Dorado, R. 2016. Healthy ready-to-eat expanded snack with high nutritional and antioxidant value produced from whole amarantin transgenic maize and black common bean. Plant Foods for Human Nutrition, 71: 218–224.

FAO. 2005. The State of Food Insecurity in the World 2004. Rome: FAO.

FAO. 2013. Findings and Recommendations of the 2011 FAO Expert Consultation on Protein Quality Evaluation in Human Nutrition. In: “Dietary Protein Quality Evaluation in Human Nutrition: Report of a FAO Expert Consultation.” FAO Food and Nutrition Paper 92. Food and Agriculture Organization of the United Nations, Rome, Italy, chapter 4, pp. 29.

Fernandez-Orozco, F.J., Zielinski, H., Muñoz, M., Piskula, M.K., Kozlowska, H. and Vidal-Valverde, C. 2009. Evaluation of bioprocess to improve the antioxidant properties of chickpeas. Lwt-Food Science and Technology 42:885-892.

Gómez-Favela, M.A., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O., Canizalez-Román, V.A., León-Sicairos, C.R., Milán- Carrillo, J. and Reyes-Moreno, C. 2017. Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition, 72:1-8.

Hsu, H.W., Vavak, D.I., Saterlee, I.D. and Miller, G.A. 1977. A multienzyme technique for estimating protein digestibility. Journal of Food Science, 42: 1269-1273.

INSP. 2013. Encuesta nacional de salud y nutrición 2012. Cuernavaca, México: Instituto Nacional de Salud Pública. Available in: encuestas.insp.mx.

López-Cervantes, J., Sánchez-Machado, D.I. and Rosas-Rodríguez, J.A. 2006. Analysis of free amino acids in fermented shrimp waste by high-performance liquid chromatography. Journal of Chromatography, 1105:106-110.

Mamilla, R.K. and Mishra, V.K. 2017. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT –Food Science and Technology, 75:51-58.

Martirosyan, D.M., Miroshnichenko, L.D., Kulakova, S.N., Pogojeva, A.V. and Zoloedov, V.I. 2007. Amaranth oil application for cary heart disease and hypertension. Lipids in Health and Disease, 6:1-12.

Massaretto, I.L., Márcio Fernando Madureira-Alves, M.F., Mussi de Mira, N.V., Carmona, A.K. and Lanfer-Marquez, U.M. 2011. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. Journal of Cereal Science, 54: 263-240.

Mendonça, S., Saldiva, P.H., Cruz, R.J. and Arêas J.A.G. 2009. Amaranth protein presents cholesterol-lowering effect. Food Chemistry, 116: 738-742.

Milán-Carrillo, J., Montoya-Rodríguez, A., Gutiérrez-Dorado, R., Perales-Sánchez, J.X.K. and Reyes-Moreno, C. 2012. Optimization of extrusion process for producing high antioxidant instant amaranth (Amaranthus hypochondriacus L) flour using response surface methodology. Applied

Mathematics, 3: 1516-1525.

Milán-Carrillo, J., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O., Sánchez-Magaña, L.M., Rochín-Medina, J.J. and Reyes-Moreno, C. 2017. Functional Beverage Produced with Bioprocessed Blue Corn and Black Beans with

Antihypertensive and Antidiabetic Potential. Revista Fitotecnia Mexicana, 40: 451-459.

Montoya-Rodríguez, A., Milán-Carrillo, J., Reyes-Moreno, C. and González de Mejía, E. 2015. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates.

International Journal of Molecular Sciences, 16: 8536-8554. Mora-Escobedo, R., Robles-Ramírez, M.C., Ramón-Gallegos, E. and Reza-Alemán, R. 2009. Effect of Protein Hydrolysates from Germinated Soybean on Cancerous Cells of the Human Cervix: An In Vitro Study. Plant Foods for Human Nutrition, 64: 271–278.

Orona-Tamayo, D. and Paredes-López, O. 2017a. Amaranth- Sustainable crop for the 21st century: food properties, and nutraceuticals for improving human health. In: Sustainable Protein Sources (Sudarshan Nadathur, Eds.), Pp 265-281. Elsevier.

Orona-Tamayo, D. and Paredes-López, O. 2017b. Chia—The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In: Sustainable Protein Sources (Sudarshan Nadathur, Eds.), Pp 239-256. Elsevier.

Pandal N. (2017). Nutraceuticals: global markets, Market Research Reports, bcc Research. Paśko P., Sajewicz M., Gorinstein S. and Zachwieja Z. 2008.

Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatographica, 20: 661-672.

Perales-Sánchez, J.X.K., Reyes-Moreno, C., Gómez-Favela, M., Milán-Carrillo, J., Cuevas-Rodríguez, E.O., Valdez-Ortiz, A. and Gutiérrez-Dorado, R. 2014. Increasing the antioxidant activity, and total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods for Human Nutrition, 69: 196-202.

Prado-Silva, L., Azevedo, L., Oliveira, J.A.C., Moreira, A.P.M., Schmiele, M., Chang, Y.K., Paula, F.B.A. and Clerisi, M.T.P.S. 2014. Sesame and resistant starch reduce the colon carcinogenesis and oxidative stress in 1,2-dimethylhydrazine-induced cancer in Wistar rats. Food Research International, 6: 609-617.

Randhir, R., Kwon, Y. and Shetty, K. 2007. Effect of thermal processing on phenolics, antioxidant activity and healthrelevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 9: 355–364.

Salas-López, F., Gutiérrez-Dorado, R., Milán-Carrillo, J., Cuevas- Rodríguez, E.O., Canizalez-Román, V.A., León-Sicairos, C.R. and Reyes-Moreno, C. 2018. Nutritional and antioxidant potential of a desert underutilized legume – tepary bean (Phaseolus acutifolius). Optimization of germination bioprocess. Food Science and Technology (Campinas). In press

Salazar-Vega, I.M., Segura-Campos, M.R., Chel-Guerrero, L.A. and Betancur-Ancona, D.A. 2012. Antihypertensive and antioxidant effects of functional foods containing chia (Salvia hispanica) protein hydrolysates. In: “Scientific, Health and Social Aspects of the Food Industry, (B.Valdez Ed.).

Satterlee, L.D., Kendrick, J.G., Marshall, H.F., Jewell, D.K., Ali, R.A., Heckman, M.M., Steinke, H.F., Larson, P., Phillips, R.D., Sarwar, G. and Slump, P. 1982. In vitro assay for predicting protein efficiency ratio as measured by rat bioassay: Collaborative study. Journal of the Association of Official Analytical Chemists, 65: 798–809.

Servín de la Mora-López, G., López-Cervantes, J., Gutiérrez- Dorado, R., Cuevas-Rodríguez, E.O., Milán-Carrillo, J., Sánchez-Machado, D.I. and Reyes-Moreno C. 2018. Effect of Optimal Germination Conditions on Antioxidant Activity, Phenolic Content and Fatty Acids and Amino Acids Profiles of Moringa Oleifera Seeds. Revista Mexicana de Ingeniería Química, 1-13.

Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A. and Hussain, J. 2015. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology, 53: 1750–1758.

USDA. 2010. Antioxidants and Health. ACES publications, pp. 4.

Vidal-Valverde, C., Frias, J., Sierra, I. Blazquez, I., Lambein, F. and Kuo, Y. 2002. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215:472–477.

Yolmeh, M. and Jafari, S.M. 2017. Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10: 413-433.




DOI: http://dx.doi.org/10.18633/biotecnia.v20i3.721

Enlaces refback

  • No hay ningún enlace refback.