Improvement of nutritional and nutraceutical value of nixtamalized maize tortillas by addition of extruded chia flour


  • Liliana León-López Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Cuauhtémoc Reyes-Moreno Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Alfa Hatzue Ley-Osuna Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Janitzio Xiomara Korina Perales-Sánchez Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Jorge Milán-Carrillo Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Edith Oliva Cuevas-Rodríguez Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México
  • Roberto Gutiérrez-Dorado Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, AP 1354, CP 80,000 Culiacán, Sinaloa, México


Palabras clave:

Tortillas, chia, extrusion, optimization, antioxidant/ antihypertensive activity


In this work the objectives were: (1) To optimize the extrusion conditions of defatted chia seeds maximizing antioxidant activity (AoxA), total phenolic content (TPC) and in vitro protein digestibility (IVPD), and (2) To evaluate the nutritional, nutraceutical, and sensory (acceptability) properties of tortillas formulated with commercial nixtamalized maize flour (MASECAMR) and optimized extruded defatted chia flour. Response surface methodology was applied as an optimization tool. A central composite rotatable design with two factors [Extrusion temperature (ET=50-160°C), screw speed (SS=50-240 rpm)] in five levels were used. The extruded from each treatment (13) were dried and ground to obtain extruded defatted chia flours (EDCF). The desirability function was applied as optimization technique. The prediction models for each response variable were adequate and reproducible. The optimal extrusion conditions to obtain optimized extruded defatted chia flour (OEDCF) were ET=147°C/SS=237 rpm; a high global desirability (D=0.815) was associated with these optimal conditions. The tortillas elaborated with MASECATM flour + OEDCF had higher IVPD, C-PER, TPC and AoxA, and better antihypertensive potential than elaborated with only MASECATM flour. The addition of OEDCF to MASECATM flour increased the nutritional and nutraceutical value of the tortillas.


Los datos de descargas todavía no están disponibles.


Acevedo-Pacheco, L. and Serna-Saldívar, S.O. 2016. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins. Food and Nutrition Research, 60:313-382.

Ademiluyi, A.O. and Oboh, G. 2013. Soybean phenolic-rich extracts inhibit key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology, 65:305-309.

Al-Shukor, N., Van-Camp, J., Gonzales, G.B., Staljanssens, D., Struijs, K., Zotti, M.J., Raes, K. and Smagghe, G. 2013. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure-activity relationships. Journal of Agricultural and Food Chemistry, 61:11832−11839.

Amaya-Guerra, C.A., Alanis-Guzman, M.G. and Serna-Saldívar, S.O. 2004. Effects of soybean fortification on protein quality of tortilla-based diet from regular and quality protein maize. Plant Foods for Human Nutrition, 59:45-50.

AOAC. 1999. Official Methods of Analysis 16th ed. Harla, Association of Official Analytical Chemists, St. Paul, USA

Argüelles-López, O.D., Reyes-Moreno, C., Gutiérrez-Dorado, R., Sánchez-Osuna, M.F., López-Cervantes, J., Cuevas- Rodríguez, E.O., Milán-Carrillo, J. and Perales-Sánchez, J.X.K. 2018. Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Biotecnia, XX: 135-145.

Awika, J.M., Rooney, L.W., Wu, X., Prior, R.L. and Cisneros-Zevallos, L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry, 51:6657-6662.

Bedolla, S. and Rooney, L.W. 1984. Characteristics of U.S. and Mexican instant maize flour for tortilla and snack preparation. Cereal Foods World, 29:732–735.

Bochicchio, R., Philips, T.D., Lovelli, S., Labella, R., Galgano, F., Di-Marisco, A., Perniola, M. and Amato, M. 2015. Innovative Crop Productions for Healthy Food: The Case of Chia (Salvia hispanica L.). En: The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin, Vastola A (ed), Springer, Rome, Italy

Chuck-Hernández, C., Perez-Carrillo, E., Soria-Hernández, C. and Serna-Saldívar, S.O. 2015. Functionality and organoleptic properties of maize tortillas enriched with five different soybean proteins. Cereal Chemistry, 92:341-349.

Corrales-Bañuelos, A.B., Cuevas-Rodríguez, E.O., Gutiérrez-Uribe, J.A., Milán-Noris, E.M., Reyes-Moreno, C., Milán-Carrillo J, and Mora-Rochín A. 2016. Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process, Journal of Cereal Science, 69:64- 70.

Cortes-Soriano, I., Buendía-González, M.O., Palacios-Rojas, N., Martínez-Cruz, E., Villaseñor-Mir, H.E. and Santa-Rosa, R.H. 2016. Quality assessment corn tortilla added with oatmeal (Avena sativa L.) nixtamalized. Revista Mexicana de Ciencias Agrícolas, 7:1715-1725.

Delgado-Andrade, C. and Morales, F. J. 2005. Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. Journal of Agricultural and Food Chemistry, 53:1403–1407.

Espinoza-Moreno, R.J., Reyes-Moreno, C., Milán-Carrillo, J., López-Valenzuela, J.A., Paredes-López, O. and Gutiérrez- Dorado, R. 2016. Healthy ready-to-eat expanded snack with high nutritional and antioxidant value produced from whole amarantin transgenic maize and common black bean. Plant Foods for Human Nutrition, 71:218-224.

FAO. 2013. Findings and Recommendations of the 2011 FAO Expert Consultation on Protein Quality Evaluation in Human Nutrition. In: “Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation.” FAO Food and Nutrition Paper 92. Food and Agriculture Organization of the United Nations, Rome, Italy, chapter 4, pp. 29.

Gamel, T.H., Linssen, J.P., Mesallam, A.S., Damu, A.A. and Shekib, L.A. 2006. Effect of seed treatments on the chemical composition of two amaranth species. Oil, sugars, minerals, and vitamins. Journal of the Science of Food and Agriculture, 80:82-89.

Grajales-García, E.M., Osorio-Díaz, P., Goñi, I., Hervert-Hernández, D., Guzmán-Maldonado, S.H. and Bello-Pérez, L.A. 2012. Chemical composition, starch digestibility and antioxidant capacity of tortilla made with a blend of quality protein maize and black bean. International Journal of Molecular Science, 13:286-301.

Gómez-Favela, M.A., Gutiérrez-Dorado, R., Cuevas-Rodríguez, E.O., Canizalez-Román, V.A., León-Sicairos, C.R., Milán- Carrillo, J. and Reyes-Moreno, C. 2017. Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods for Human Nutrition, 72:1-8.

Gutiérrez-Dorado, R., Ayala-Rodríguez, A.E., Milán-Carrillo, J., López-Cervantes, J., Garzón-Tiznado, J.A., López-Valenzuela, J.A., Paredes-López, O. and Reyes-Moreno C. 2008a. Technological and Nutritional Properties of Flours and Tortillas from Nixtamalized and Extruded Quality Protein Maize (Zea mays L.). Cereal Chemistry, 85:808–816.

Gutiérrez-Dorado, R., Cárdenas-Valenzuela, O.G., Alarcón- Valdez, C., Garzón-Tiznado, J.A., Milán-Carrillo, J., Armienta- Aldana, E. and Reyes-Moreno, C. 2008b. Alimento para niños preparado con harinas de maíz de calidad proteínica y garbanzo extruidos. Interciencia, 33:868-874.

Hirth, M., Preib, R., Mayer-Miebach, E. and Schuchmann, H.P. 2015. Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidins and hydroxycinnamic acids as the main bioactive chokeberry polyphenols. LWT - Food Science and Technology, 62:511- 516.

Kaur, C. and Kapoor, HC. 2001. Antioxidants in fruits and vegetables - the millennium’s health. International Journal of Food Science and Technology, 36:703-725

Korus, J., Gumul, D. and Czechowska, K. 2007. Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technology and Biotechnology, 45:139–146.

Marineli, R.S., Moraes, É.A., Lenquiste, S.A., Godoy, A.T., Eberlin, M.N. and Maróstica, M.R.Jr. 2014. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT - Food Science and Technology, 59:13041310.

Martínez-Cruz, O. and Paredes-López, O. 2014. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high-performance liquid chromatography. Journal of Chromatography A, 1346:43–48.

Massaretto, I.L., Madureira-Alves, M.F., Mussi de Mira, N.V., Carmona, A.K. and Lanfer-Marquez, U.M. 2011. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. Journal of Cereal Science, 54:263-240.

Milán-Carrillo, J., Gutiérrez-Dorado, R, Perales-Sánchez, J.X.K., Cuevas-Rodríguez E.O., Ramírez-Wong, R, and Reyes- Moreno, C. 2006. The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal Food Science and Technology, 41:727-736

Milán-Carrillo, J., Montoya-Rodríguez, A., Gutiérrez-Dorado, R., Perales-Sánchez, J.X.K. and Reyes-Moreno, C. 2012. Optimization of the extrusion process for producing high antioxidant instant amaranth (Amaranthus hypochondriacus L) flour using response surface methodology. Applied Mathematics, 3:1516-1525.

Montoya-Rodríguez, A., Milán-Carrillo, J., Reyes-Moreno, C. and González de Mejía, E. 2015. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates. International Journal of Molecular Sciences, 16:8536-8554.

Mora-Rochín, S., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O., Sánchez-Peña, P., Reyes-Moreno, C. and Milán-Carrillo, J. 2010. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. Journal of Cereal Science, 52:502–508.

Orona-Tamayo, D., Valverde, M.E. and Paredes-López, O. 2016. Chia - The New Golden Seed for the 21st Century: Nutraceutical Properties and Technological Uses. In: “Sustainable Protein Sources”, 1st edition, Nadathyr S (ed), Elsevier Publishers, Chapter 17, pp 265-281 doi: 10.1016/ B978-0-12-802778-3.00017-2.

Pérez-Hernández L. M, Chávez-Quiroz, K., Medina-Juárez, L. Á. and Gámez-Meza, N. 2013. Phenolic compounds, melanoidins, and antioxidant activity of green coffee bean and processed coffee from Coffea arabica and Coffea canephora species. Biotecnia, 15:51-56.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26:1231-1237.

Rendón-Villalobos, R., Ortiz-Sanchez, A., Solorza-Feria, J. and Trujillo-Hernandez, C.A. 2012. Formulation, physicochemical, nutritional and sensorial evaluation of corn tortillas supplemented with chia seed (Salvia hispanica L.). Czech Journal of Food Science, 30:118–125.

Reyes-Moreno, C., Reyes-Fernández, P.C., Cuevas-Rodríguez, E.O., Milán-Carrillo, J. and Mora-Rochín, S. 2018. Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking. En: Extrusion of Metals, Polymers, and Food Products. [Consultado 18 Enero 2019] Disponible en:

Salas-López, F., Gutiérrez-Dorado, R., Milán-Carrillo, J., Cuevas- Rodríguez, E.O., Canizalez-Román, V.A., León-Sicairos, C.R. and Reyes-Moreno, C. 2018. Nutritional and antioxidant potential of a desert underutilized legume tepary bean (Phaseolus acutifolius). Optimization of germination bioprocess. Food Science and Technology (Campinas). On line.

Salazar-Vega, I.M., Segura-Campos, M.R., Chel-Guerrero., L.A. and Betancur-Ancona, D.A. 2012. Antihypertensive and Antioxidant Effects of Functional Foods Containing Chia (Salvia hispanica) Protein Hydrolysates. En Scientific, Health and Social Aspects of the Food Industry. Valdez B (ed.), InTech. Disponible en:

Sarawong, C., Schoenlechner, R., Sekiguchi, K., Berghofer, E. and Ng, P.K. 2014. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, 143:33-39.

Treviño-Mejía, D., Luna-Vital, D.A., Gaytán-Martínez, M., Mendoza, S. and Loarca-Piña, G. 2016. Fortification of commercial nixtamalized maize (Zea mays L) with common bean (Phaseolus vulgaris L) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. Journal of Food Quality, 39:569–579.

Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A. and Hussain, J. 2015. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. Journal of Food Science and Technology, 53:1750-1758.

Valdivia-López, M.A. and Tecante, A. 2015. Chia (Salvia hispanica): A review of native Mexican seed and its nutritional and functional properties. Advances in Food and Nutrition Research, 75:53-75.

Vázquez-Rodríguez, J.A., Amaya-Guerra, C.A., Báez-González, J.G., Nuñez-González, M.A. and Figueroa-Cárdenas, J.D. 2013. Study of the fortification with bean and amaranth flours in nixtamalized maize tortilla. CyTA - Journal of Food, 11:62-66.




Cómo citar

León-López, L., Reyes-Moreno, C., Ley-Osuna, A. H., Perales-Sánchez, J. X. K., Milán-Carrillo, J., Cuevas-Rodríguez, E. O., & Gutiérrez-Dorado, R. (2019). Improvement of nutritional and nutraceutical value of nixtamalized maize tortillas by addition of extruded chia flour. Biotecnia, 21(3), 56–66.



Artículos originales


Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.