Concentración y método de aplicación de selenio en plántulas de pimiento

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1675

Palabras clave:

selenito de sodio, raíz, foliar, cultivo sin suelo

Resumen

El selenio (Se) es considerado un elemento benéfico para las plantas; sin embargo, concentraciones elevadas pueden causar trastornos fisiológicos y morfológicos. El objetivo del estudio, fue identificar la concentración y método de aplicación de Se que permita la obtención de plántulas de calidad en cultivo de pimiento, por ello, se establecieron dos experimentos bajo condiciones de invernadero cultivados en solución nutritiva. En el experimento 1, para aplicación radical, se cultivaron plántulas en solución nutritiva enriquecida con Se en forma de Na3SeO4 en concentraciones de: 0.0, 1.0, 2.5, 5.0 y 10.0 μM. En el experimento 2, para aplicación foliar, las plántulas se asperjaron con Se en forma de Na3SeO4 en concentraciones de 0, 5, 10, 25 y 50 μM. En cada experimento se utilizó un diseño experimental completamente al azar con cinco repeticiones por tratamiento. El suministro de 1 y 5 μM de Se mediante aplicación radical y foliar respectivamente, estimularon el crecimiento de las plántulas de pimiento, asimismo, la presencia de Se en ambos métodos de aplicación, aumentó la concentración de pigmentos fotosintéticos en hojas. El Se mejoró la calidad de las plántulas, al inducir respuestas favorables en el crecimiento y concentración de pigmentos fotosintéticos.

Citas

Babaei, A., Ranglová, K., Malapascua, J.R., and Masojídek, J. 2017. The synergistic effect of Selenium (selenite,–SeO32−) dose and irradiance intensity in Chlorella cultures. AMB Express, 7(1), 1-14.

Borbély, P., Molnár, Á., Valyon, E., Ördög, A., Horváth-Boros, K., Csupor, D., Fehér, A. and Kolbert, Z. 2021. The effect of foliar selenium (se) treatment on growth, photosynthesis, and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants, 10(1), pp. 72.

Dawood, M.G., Sadak, M.S., Bakry, B.A. and Kheder, H.H. 2020. Effect of glutathione and/or selenium levels on growth, yield, and some biochemical constituents of some wheat cultivars grown under sandy soil conditions. Bulletin of the National Research Centre, 44(1), pp. 1-11.

Galić, L., Vinković, T., Ravnjak, B. and Lončarić, Z. 2021. Agronomic biofortification of significant cereal crops with selenium—a review. Agronomy, 11(5), pp. 1015.

García-Valenzuela, X., García-Moya, E., Rascón-Cruz, Q., Herrera-Estrella, L., and Aguado-Santacruz, G.A. 2005. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of plant physiology, 162(6), 650-661.

Geshnizjani, N., Sarikhani Khorami, S., Willems, L.A., Snoek, B.L., Hilhorst, H.W. and Ligterink, W. 2019. The interaction between genotype and maternal nutritional environments affects tomato seed and seedling quality. Journal of experimental botany, 70(10), pp. 2905-2918.

González-Chávez O., Bugarín-Montoya R., Alejo-Santiago G., Juárez-Rosete C.R., 2019. Relación NO3-/NH4+ en plantas de pimiento morrón con despunte temprano. Revista Bio Ciencias 6, e548.

Hasanuzzaman, M., Bhuyan, M.H.M., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Nahar, K. and Fujita, M. 2020. Selenium toxicity in plants and environment: biogeochemistry and remediation possibilities. Plants, 9(12), pp. 1711.

Hatamian, M., Nejad, A.R., Kafi, M., Souri, M.K. and Shahbazi, K., 2020. Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chemical and Biological Technologies in Agriculture, 7(1), pp. 1-8.

Huang, C., Yu, M., Sun, L., Qin, N. and Wei, L., 2020. Physiological responses of sweet potato seedlings under drought-stress conditions with selenium applications. Journal of Agricultural and Crop Research, 8(5), pp. 98-112.

Kacjan Maršič, N., Golob, A., Šircelj, H., Mihorič, M., Kroflič, A., Stibilj, V., and Germ, M. (2019). Effects of exogenous selenium in different concentrations and forms on selenium accumulation and growth of spinach (Spinacia oleracea L.). Journal of Agricultural Science and Technology, 21(7), 1905-1917.

Lanza, M.G.B.D. and Reis, A.R.dos., 2021. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry, 164, pp. 27–43.

Lei, B., Bian, Z., Yang, Q., Wang, J., Cheng, R., Li, K. and Tong, Y. 2018. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.). Journal of Integrative Agriculture, 17(4), pp. 837-846.

León-Morales, J.M., Panamá-Raymundo, W., Langarica-Velázquez, E.C., and García-Morales, S. 2019. Selenium and vanadium on seed germination and seedling growth in pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). Revista Bio Ciencias 6, e425.

Liang, Y., Su, Y., Li, L., Huang, X., Panhwar, F.H., Zheng, T., and Zhu, J. 2019. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC plant biology, 19(1), 1-11.

Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 11: 591-592.

Luo, H., He, L., Du, B., Pan, S., Mo, Z., Duan, M., Tian, H. and Tang, X. 2020. Biofortification with chelating selenium in fragrant rice: Effects on photosynthetic rates, aroma, grain quality and yield formation. Field Crops Research, 255, pp. 107909.

Mozafariyan, M., Pessarakli, M. and Saghafi, K. 2017. Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. Journal of Plant Nutrition, 40(2), pp. 139-144.

Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., and Shabbir, R.N. (2014). Selenium (Se) regulates seedling growth in wheat under drought stress. Advances in Chemistry. 2014, 143567.

Pereira, A.S., Dorneles, A.O.S., Bernardy, K., Sasso, V.M., Bernardy, D., Possebom, G., Rossato, L.V., Dressler, V. L. and Tabaldi, L.A. 2018. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environmental Science and Pollution Research, 25(19), pp. 18548-18558.

Qin, K., and Leskovar, D.I. 2020. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture, 10(7), 254.

Rathore, A., & Jasrai, Y.T. 2013. Growth and chlorophyll levels of selected plants with varying photosynthetic pathways (C3, C4 and CAM). International Journal of Scientific & Engineering Research. 4(2), 1-4.

Sabatino, L., Ntatsi, G., Iapichino, G., D’Anna, F., and De Pasquale, C. 2019. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic System. Agronomy, 9(4), pp. 207.

Shekari, L., Kamelmanesh, M.M., Mozafarian, M. and Sadeghi, F. 2016. Beneficial effects of selenium on some morphological and physiological trait of hot pepper (Capsicum anuum). Journal Of Horticultural Science, 29(4), pp. 594-600.

Simkin, A.J., López-Calcagno, P.E., and Raines, C.A. 2019. Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70(4), 1119-1140.

Ślusarczyk, J., Wierzbicka, M., Suchocki, P. and Kuraś, M., 2015. Ultrastructural changes in onion (Allium cepa L.) root tip meristem cells treated with Selol and sodium selenate (IV). Caryologia, 68(4), pp. 306-316.

Sun, H.W., Ha, J., Liang, S.X., and Kang, W.J. 2010. Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis, 41(10), pp. 1195-1204.

Tredenick, E.C., Forster, W.A., Pethiyagoda, R., van Leeuwen, R.M., and McCue, S.W. 2021. Evaporating droplets on inclined plant leaves and synthetic surfaces: Experiments and mathematical models. Journal of Colloid and Interface Science, 592, 329-341.

Trejo-Téllez, L.I., García-Jiménez, A., Escobar-Sepúlveda, H.F., Ramírez-Olvera, S.M., Bello-Bello, J.J., and Gómez-Merino, F.C. 2020. Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ, 8, e9224.

Wang, Y., Chu, Y., Wan, Z., Zhang, G., Liu, L., and Yan, Z. 2021. Root Architecture, Growth and Photon Yield of Cucumber Seedlings as Influenced by Daily Light Integral at Different Stages in the Closed Transplant Production System. Horticulturae, 7(9), 328.

Xia, Q., Yang, Z., Shui, Y., Liu, X., Chen, J., Khan, S., and Gao, Z. 2020. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Frontiers in Plant Science, 11, 1114.

Yin, H., Qi, Z., Li, M., Ahammed, G.J., Chu, X. and Zhou, J., 2019. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and environmental safety, 169, pp. 911-917.

Descargas

Publicado

2022-05-31

Número

Sección

Artículos