Recubrimientos a base de alginato de sodio extraído de Sargassum fluitans y nanopartículas de plata para prolongar la vida de anaquel de papaya (Carica papaya L.)
DOI:
https://doi.org/10.18633/biotecnia.v24i3.1739Palabras clave:
Recubrimiento, alginato de sodio, Sargassum fluitans, nanopartículas de plata, papaya MaradolResumen
La papaya es un fruto climatérico que tiene una vida en anaquel corta. Una opción para prolongar la vida útil de este fruto es el uso de recubrimientos. El objetivo del presente estudio fue evaluar el efecto del recubrimiento a base de alginato extraído de Sargassum fluitans adicionado con nanopartículas de plata (NpAg) sobre la vida en anaquel de papaya (Carica papaya L. var. Maradol). Las NpAg se obtuvieron mediante síntesis verde. Las papayas, en grado de madurez 3, fueron recubiertas con tres soluciones: solución 1 (2.49 % alginato), solución 2 (2.49 % alginato y 1.1 mg NpAg/mL) y el grupo control (agua). Los frutos se pincelearon y se almacenaron 15 días a 25 °C y 75 % de humedad relativa. Los frutos recubiertos con las soluciones 1 y 2 mantuvieron valores óptimos de firmeza (6.9 y 6.6 MPa), sólidos solubles totales (11.1 y 11.06 °Brix) y contenido de ácido ascórbico (22.31 y 23.02 mg AA/g pulpa) durante 6 días más que el control. Los recubrimientos de alginato de sodio extraído de S. fluitans adicionado o no con NpAg retardaron la maduración de la papaya. Esta tecnología permite prolongar la vida en anaquel de la papaya a 25 °C sin utilizar refrigeración.
Descargas
Citas
AOAC. 2000. Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists DC.
Barrera, E., Gil, J., Restrepo, A., Mosquera, K. y Durango, D. 2015. Coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiana). Revista Faculta Nacional de Agronomía. 68(2): 7667-7678. https://doi.org/10.15446/rfnam.v68n2.50982
Barrera, A.M.P., Pérez, M.S.R., González, J.G.B., Amaya-Guerra, C.A., Román, R.A. y Rodríguez, S.A.G. 2021. Recubrimiento comestible a base de alginato en combinación con eugenol nanoencapsulado y su efecto conservador en la vida útil de jitomate (Solanum lycopersicum). Biotecnia. 23(3): 134-141. https://doi.org/10.18633/biotecnia.v23i3.1477
Barreto G.P.M., Fabi J.P., De Rosso V.V., Cordenunsi B.R., Lajolo F.M., do Nascimento J.R.O. y Mercadante A.Z. 2011. Influence of ethylene on carotenoid biosynthesis during papaya postharvesting ripening. Journal of Food Composition and Analysis. 24: 620-624. https://doi.org/10.1016/j.jfca.2011.02.006
Bautista-Baños, S., Sivakumar, D., Bello-Pérez, A., Villanueva-Arce, R. y Hernández-López, M. 2013. A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Protection. 49: 8-20. https://doi.org/10.1016/j.cropro.2013.02.011
Borazjani, N.J., Tabarsa, M., You, S., y Rezaei, M. 2017. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International Journal of Biological Macromolecules. 101: 703-711. https://doi.org/ 10.1016/j.ijbiomac.2017.03.128
Carpita, N.C. y Giberaut, D.M. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal. 3: 1-30. https://doi.org/10.1111/j.1365-313x.1993.tb00007.x
Castillo-Herrera, N., Hidalgo-Contreras, J.V. y Vequia, H.D.D. 2020. Bibliometric research of technology used in harvest and postharvest of papaya. Horticulture International Journal. 4(3): 68-73. https://doi.org/10.15406/hij.2020.04.00160
Davis, T., Llanes, F., Volesky, B. y Mucci, A. 2003. Metal selectivity of Sargassum spp. and their alginates in relation to their a-L-guluronic acid content and conformation. Environmental Science and Technology. 37(2): 261-267. https://doi.org/10.1021/es025781d
de Carvalho, L.M.J., Gomes, P.B., de Oliveira Godoy, R.L., Pacheco, S., do Monte, P.H.F., de Carvalho, J.L.V., Nutti, M.R., Lima-Neves, A.C., Alves-Vieira, A.C.R. y Ramos, S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 47(2): 337-340. https://doi.org/10.1016/j.foodres.2011.07.040
EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). 2016. EFSA J. 14(1): 4364-4427.
Fabi, J.P. y Do Prado, S.B.R. 2019. Fast and furious: ethylene-triggered changes in the metabolism of papaya fruit during ripening. Frontiers in Plant Science. 10(535): 1-10. https://doi.org/10.3389/fpls.2019.00535
Gómez, M.L.P.A., Lajolo, F.M. y Cordenunsi, B.R. 1999. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo). Food Science and Technology. 19: 246-252. https://doi.org/10.1590/S0101-20611999000200017
Hamzah, H., Osmana, A., Tan, C. y Ghazli, F. 2013. Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology and Technology. 75: 142-146. https://doi.org/10.1016/j.postharvbio.2012.08.012
Maringgal, B., Hashim, N., Tawakkal, I.S.M.A., Mohamed, M.T.M., Hamzah, M.H. y Shukor, N.I.A. 2019. The causal agent of anthracnose in papaya fruit and control by three different Malaysian stingless bee honeys, and the chemical profile. Scientia Horticulturae. 257: 108590. https://doi.org/10.1016/j.scienta.2019.108590.
Martínez-Molina, E.C., Freile-Pelegrín, Y., Ovando-Chacón, S.L. Gutiérrez-Miceli, F.A., Ruiz-Cabrera, M.A., Grajales-Lagunes, A., Lujan-Hidalgo, M.C. y Abud-Archila, M. 2022. Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. Journal of Food Measurement and Characterization. 16: 126-136. https://doi.org/10.1007/s11694-021-01156-6
Monzón-Ortega, K., Salvador-Figueroa, M., Gálvez-López, D. Rosas-Quijano, R., Ovando-Medina I. y Vázquez-Ovando A. 2018. Characterization of Aloe vera-chitosan composite films and their use for reducing the disease caused by fungi in papaya Maradol. Journal of Food Science Technology. 55: 4747-4757. https://doi.org/10.1007/s13197-018-3397-2
Özkan, M., Kırca, A. y Cemeroǧlu, B. 2004. Effects of hydrogen peroxide on the stability of ascorbic acid during storage in various fruit juices. Food chemistry. 88(4): 591-597. https://doi.org/10.1016/j.foodchem.2004.02.011
Pandey, A.K. y Singh, I.S. 1999. Studies on preparation and preservation of guava ready-to-serve beverage. Indian Journal of Horticulture. 56(2): 130-132. https://doi.org/10.20546/ijcmas.2017.609.128
Pezzuto, A., Losasso, C., Mancin, M., Gallocchio, F., Piovesana, A., Binato, G., Gallina, A., Marangon, A., Mioni, R., Favretti, M. y Ricci, A. 2015. Food safety concerns deriving from the use of silver based food packaging materials. Frontier in Microbiology. 6: 1109. https://doi.org/10.3389/fmicb.2015.01109
Raut Rajesh, W., Lakkakula J.R., Kolekar N. S., Mendhulkar V.D. y Kashid S.B. 2009. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Current Nanoscience. 5(1): 117-122. https://doi.org/10.2174/157341309787314674
Resende, E.C.O., Martins, P.F., Azevedo, R.A.D., Jacomino, A.P. y Bron, I.U. 2012. Oxidative processes during 'Golden' papaya fruit ripening. Brazilian Journal of Plant Physiology. 24(2): 85-94. https://doi.org/10.1590/S1677-04202012000200002
Robles-Flores, G., Abud-Archila, M., Ventura-Canseco, L., Meza-Gordillo, R., Grajales-Lagunes, A., Ruiz-Cabrera, M. y Gutiérrez-Miceli, F. 2018. Development and evaluation of a film and edible coating obtained from the Cajanus cajan seed applied to fresh strawberry fruit. Food and Bioprocess Technology. 11(12): 2172-2181. https://doi.org/ 10.1007/s11947-018-2175-5.
Rodrigues, J.P., de Souza Coelho, C.C., Soares, A.G. y Freitas-Silva, O. 2021. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology. 36: 102128. https://doi.org/10.1016/j.bcab.2021.102128
Rodríguez-Martínez, R., Brigitta, V. y Jordán-Dahlgren, E. 2016. Afluencia masiva de sargazo pelágico a la costa del Caribe mexicano (2014-2015). En Florecimientos algales nocivos en México. García-Mendoza E., Quijano-Scheggia S.I., Olivos-Ortiz A. y Nuñez-Vásquez E.J. (ed.), pp 352-365. Ensenada: CICESE.
Rolim, W., Pelegrino, M., Araújo Lima, B., Ferraz, L., Costa, F., Bernardes, J. S. y Seabra, A. 2019. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science. 463: 66-74. https://doi.org/10.1016/j.apsusc.2018.08.203
Santamaría-Basulto, F., Sauri, D.E., Espadas, G.F., Díaz, P.R., Larqué, S.A., y Santamaría, J.M. 2009. Postharvest ripening and maturity indices for maradol papaya. Interciencia. 34(8): 583-588.
Shen, Y.H., Yang, F.Y., Lu, B.G., Zhao, W.W., Jiang, T., Feng, L., Chen, X.J. y Ming, R. 2019. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics. 20(49): 1-11. https://doi.org/10.1186/s12864-018-5388-0
Vela-Gutiérrez, G., Zúñiga, E.J.L., Parra, E.G., García, E.L., Coronel, O.A.D.A. y López, A.A.V. 2019. Efecto de la luz roja y el contenido de nutrientes sobre la embriogénesis somática, enraizamiento y aclimatación a suelo de plantas de papaya maradol. Biotecnia. 21(1), 93-101. https://doi.org/10.18633/biotecnia.v21i1.818
Vieira, A.C.F., de Matos-Fonseca, J., Menezes, N.M.C., Monteiro, A.R. y Valencia, G.A. 2020. Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. International Journal of Biological Macromolecules. 164: 489-498. https://doi.org/10.1016/j.ijbiomac.2020.07.130
Yang, S. 1986. Regulation of biosynthesis and action of ethylene. Manipulation of ethylene responses in horticulture, Acta Hortoculturae. 201: 53-60. https://doi.org/10.17660/ActaHortic.1987.201.6
Zhang, L., Huang, C. y Zhao, H. 2019. Application of pullulan and chitosan multilayer coatings in fresh papayas. Coatings. 9(11): 745. https://doi.org/10.3390/coatings9110745
Zhou, L. y Paull, R.E. 2001. Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. Journal of the American Society for Horticultural Science. 126(3): 351-357. https://doi.org/10.21273/JASHS.126.3.351
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)