Coatings based on sodium alginate extracted from Sargassum fluitans and silver nanoparticles to prolong the shelf life of papaya (Carica papaya L.)

Authors

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1739

Keywords:

coating, sodium alginate, Sargassum fluitans, silver nanoparticles, papaya Maradol

Abstract

Papaya is a climacteric fruit that has a short shelf life. An alternative to extend the shelf life of this fruit is the use of coatings. Therefore, the objective of this study was to evaluate the effect of the coating based on alginate extracted from Sargassum fluitans added with silver nanoparticles on the shelf life of papaya (Carica papaya L. var. Maradol). Silver nanoparticles (NpAg) were obtained by green synthesis. Papaya fruits, in degree of maturity 3, were coated with three solutions: solution A (2.49 % alginate), solution B (2.49 % alginate and 1.1 mg NpAg/mL) and group control (water). The fruits coated and stored for 15 days at 25 °C and 75 % of relative humidity. The fruits coated with solution 1 and 2 maintained optimal values of firmness (6.9 and 6.6 MPa), total soluble solids (11.1 and 11.06 °Brix) and ascorbic acid content (22.31 and 23.02 mg AA/g pulp) during 6 days more than control. The coating of sodium alginate extracted from S. fluitans added or not with NpAg retarded the maturation of the papaya. This technology allowed to prolong the shelf life of papaya at 25 °C without refrigeration.

Downloads

Download data is not yet available.

References

AOAC. 2000. Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists DC.

Barrera, E., Gil, J., Restrepo, A., Mosquera, K. y Durango, D. 2015. Coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiana). Revista Faculta Nacional de Agronomía. 68(2): 7667-7678. https://doi.org/10.15446/rfnam.v68n2.50982

Barrera, A.M.P., Pérez, M.S.R., González, J.G.B., Amaya-Guerra, C.A., Román, R.A. y Rodríguez, S.A.G. 2021. Recubrimiento comestible a base de alginato en combinación con eugenol nanoencapsulado y su efecto conservador en la vida útil de jitomate (Solanum lycopersicum). Biotecnia. 23(3): 134-141. https://doi.org/10.18633/biotecnia.v23i3.1477

Barreto G.P.M., Fabi J.P., De Rosso V.V., Cordenunsi B.R., Lajolo F.M., do Nascimento J.R.O. y Mercadante A.Z. 2011. Influence of ethylene on carotenoid biosynthesis during papaya postharvesting ripening. Journal of Food Composition and Analysis. 24: 620-624. https://doi.org/10.1016/j.jfca.2011.02.006

Bautista-Baños, S., Sivakumar, D., Bello-Pérez, A., Villanueva-Arce, R. y Hernández-López, M. 2013. A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Protection. 49: 8-20. https://doi.org/10.1016/j.cropro.2013.02.011

Borazjani, N.J., Tabarsa, M., You, S., y Rezaei, M. 2017. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International Journal of Biological Macromolecules. 101: 703-711. https://doi.org/ 10.1016/j.ijbiomac.2017.03.128

Carpita, N.C. y Giberaut, D.M. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal. 3: 1-30. https://doi.org/10.1111/j.1365-313x.1993.tb00007.x

Castillo-Herrera, N., Hidalgo-Contreras, J.V. y Vequia, H.D.D. 2020. Bibliometric research of technology used in harvest and postharvest of papaya. Horticulture International Journal. 4(3): 68-73. https://doi.org/10.15406/hij.2020.04.00160

Davis, T., Llanes, F., Volesky, B. y Mucci, A. 2003. Metal selectivity of Sargassum spp. and their alginates in relation to their a-L-guluronic acid content and conformation. Environmental Science and Technology. 37(2): 261-267. https://doi.org/10.1021/es025781d

de Carvalho, L.M.J., Gomes, P.B., de Oliveira Godoy, R.L., Pacheco, S., do Monte, P.H.F., de Carvalho, J.L.V., Nutti, M.R., Lima-Neves, A.C., Alves-Vieira, A.C.R. y Ramos, S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 47(2): 337-340. https://doi.org/10.1016/j.foodres.2011.07.040

EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). 2016. EFSA J. 14(1): 4364-4427.

Fabi, J.P. y Do Prado, S.B.R. 2019. Fast and furious: ethylene-triggered changes in the metabolism of papaya fruit during ripening. Frontiers in Plant Science. 10(535): 1-10. https://doi.org/10.3389/fpls.2019.00535

Gómez, M.L.P.A., Lajolo, F.M. y Cordenunsi, B.R. 1999. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo). Food Science and Technology. 19: 246-252. https://doi.org/10.1590/S0101-20611999000200017

Hamzah, H., Osmana, A., Tan, C. y Ghazli, F. 2013. Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology and Technology. 75: 142-146. https://doi.org/10.1016/j.postharvbio.2012.08.012

Maringgal, B., Hashim, N., Tawakkal, I.S.M.A., Mohamed, M.T.M., Hamzah, M.H. y Shukor, N.I.A. 2019. The causal agent of anthracnose in papaya fruit and control by three different Malaysian stingless bee honeys, and the chemical profile. Scientia Horticulturae. 257: 108590. https://doi.org/10.1016/j.scienta.2019.108590.

Martínez-Molina, E.C., Freile-Pelegrín, Y., Ovando-Chacón, S.L. Gutiérrez-Miceli, F.A., Ruiz-Cabrera, M.A., Grajales-Lagunes, A., Lujan-Hidalgo, M.C. y Abud-Archila, M. 2022. Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. Journal of Food Measurement and Characterization. 16: 126-136. https://doi.org/10.1007/s11694-021-01156-6

Monzón-Ortega, K., Salvador-Figueroa, M., Gálvez-López, D. Rosas-Quijano, R., Ovando-Medina I. y Vázquez-Ovando A. 2018. Characterization of Aloe vera-chitosan composite films and their use for reducing the disease caused by fungi in papaya Maradol. Journal of Food Science Technology. 55: 4747-4757. https://doi.org/10.1007/s13197-018-3397-2

Özkan, M., Kırca, A. y Cemeroǧlu, B. 2004. Effects of hydrogen peroxide on the stability of ascorbic acid during storage in various fruit juices. Food chemistry. 88(4): 591-597. https://doi.org/10.1016/j.foodchem.2004.02.011

Pandey, A.K. y Singh, I.S. 1999. Studies on preparation and preservation of guava ready-to-serve beverage. Indian Journal of Horticulture. 56(2): 130-132. https://doi.org/10.20546/ijcmas.2017.609.128

Pezzuto, A., Losasso, C., Mancin, M., Gallocchio, F., Piovesana, A., Binato, G., Gallina, A., Marangon, A., Mioni, R., Favretti, M. y Ricci, A. 2015. Food safety concerns deriving from the use of silver based food packaging materials. Frontier in Microbiology. 6: 1109. https://doi.org/10.3389/fmicb.2015.01109

Raut Rajesh, W., Lakkakula J.R., Kolekar N. S., Mendhulkar V.D. y Kashid S.B. 2009. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Current Nanoscience. 5(1): 117-122. https://doi.org/10.2174/157341309787314674

Resende, E.C.O., Martins, P.F., Azevedo, R.A.D., Jacomino, A.P. y Bron, I.U. 2012. Oxidative processes during 'Golden' papaya fruit ripening. Brazilian Journal of Plant Physiology. 24(2): 85-94. https://doi.org/10.1590/S1677-04202012000200002

Robles-Flores, G., Abud-Archila, M., Ventura-Canseco, L., Meza-Gordillo, R., Grajales-Lagunes, A., Ruiz-Cabrera, M. y Gutiérrez-Miceli, F. 2018. Development and evaluation of a film and edible coating obtained from the Cajanus cajan seed applied to fresh strawberry fruit. Food and Bioprocess Technology. 11(12): 2172-2181. https://doi.org/ 10.1007/s11947-018-2175-5.

Rodrigues, J.P., de Souza Coelho, C.C., Soares, A.G. y Freitas-Silva, O. 2021. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology. 36: 102128. https://doi.org/10.1016/j.bcab.2021.102128

Rodríguez-Martínez, R., Brigitta, V. y Jordán-Dahlgren, E. 2016. Afluencia masiva de sargazo pelágico a la costa del Caribe mexicano (2014-2015). En Florecimientos algales nocivos en México. García-Mendoza E., Quijano-Scheggia S.I., Olivos-Ortiz A. y Nuñez-Vásquez E.J. (ed.), pp 352-365. Ensenada: CICESE.

Rolim, W., Pelegrino, M., Araújo Lima, B., Ferraz, L., Costa, F., Bernardes, J. S. y Seabra, A. 2019. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science. 463: 66-74. https://doi.org/10.1016/j.apsusc.2018.08.203

Santamaría-Basulto, F., Sauri, D.E., Espadas, G.F., Díaz, P.R., Larqué, S.A., y Santamaría, J.M. 2009. Postharvest ripening and maturity indices for maradol papaya. Interciencia. 34(8): 583-588.

Shen, Y.H., Yang, F.Y., Lu, B.G., Zhao, W.W., Jiang, T., Feng, L., Chen, X.J. y Ming, R. 2019. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics. 20(49): 1-11. https://doi.org/10.1186/s12864-018-5388-0

Vela-Gutiérrez, G., Zúñiga, E.J.L., Parra, E.G., García, E.L., Coronel, O.A.D.A. y López, A.A.V. 2019. Efecto de la luz roja y el contenido de nutrientes sobre la embriogénesis somática, enraizamiento y aclimatación a suelo de plantas de papaya maradol. Biotecnia. 21(1), 93-101. https://doi.org/10.18633/biotecnia.v21i1.818

Vieira, A.C.F., de Matos-Fonseca, J., Menezes, N.M.C., Monteiro, A.R. y Valencia, G.A. 2020. Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. International Journal of Biological Macromolecules. 164: 489-498. https://doi.org/10.1016/j.ijbiomac.2020.07.130

Yang, S. 1986. Regulation of biosynthesis and action of ethylene. Manipulation of ethylene responses in horticulture, Acta Hortoculturae. 201: 53-60. https://doi.org/10.17660/ActaHortic.1987.201.6

Zhang, L., Huang, C. y Zhao, H. 2019. Application of pullulan and chitosan multilayer coatings in fresh papayas. Coatings. 9(11): 745. https://doi.org/10.3390/coatings9110745

Zhou, L. y Paull, R.E. 2001. Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. Journal of the American Society for Horticultural Science. 126(3): 351-357. https://doi.org/10.21273/JASHS.126.3.351

Published

2022-10-17

How to Cite

Martínez, E., Abud Archila, M. ., Freile Pelegrín, Y., Luján Hidalgo, M. C., Gutiérrez Miceli, F. A., & Ovando Chacón, S. L. (2022). Coatings based on sodium alginate extracted from Sargassum fluitans and silver nanoparticles to prolong the shelf life of papaya (Carica papaya L.). Biotecnia, 24(3), 159–168. https://doi.org/10.18633/biotecnia.v24i3.1739

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.