Estudio preliminar de las propiedades físicas y antibacteriales de películas de almidones modificados de avena mezclados con quitosano

Autores/as

  • Juan Manuel Tirado-Gallegos Autonomous University of Chihuahua image/svg+xml
  • Paul Baruk Zamudio Flores Centro de Investigación en Alimentación y Desarrollo
  • Juan Carlos Bustillos-Rodríguez Centro de Investigación en Alimentación y Desarrollo image/svg+xml
  • Carlos Horacio Acosta-Muñiz Centro de Investigación en Alimentación y Desarrollo image/svg+xml
  • Rogelio Calderón-Loera Centro de Investigación en Alimentación y Desarrollo image/svg+xml
  • Miguel Ángel López-Mata Departamento de Ciencias de la Salud
  • Glenda Pacheco-Vargas Instituto Politécnico Nacional image/svg+xml
  • María Hernández-González Universidad Autónoma Agraria Antonio Narro image/svg+xml
  • Haydeé Yajaira López-De la Peña Universidad Autónoma Agraria Antonio Narro image/svg+xml
  • Adalberto Ortega-Ortega Autonomous University of Chihuahua image/svg+xml
  • Gilber Vela-Gutiérrez Universidad de Ciencias y Artes de Chiapas image/svg+xml
  • Vicente Espinosa-Solis Autonomous University of San Luis Potosí image/svg+xml

DOI:

https://doi.org/10.18633/biotecnia.v26.2072

Palabras clave:

Películas degradables, autoclaveado, lintnerización, propiedad antibacterial, permeabilidad al vapor de agua, solubilidad

Resumen

Se realizó una modificación física (autoclaveado) y cinco modificaciones químicas (lintnerización, entrecruzamiento, acetilación, hidroxipropilación y oxidación) al almidón nativo de avena. Los almidones se mezclaron con quitosano (Q) y plastificante (glicerol) para elaborar películas. Las soluciones formadoras de película (SFP) se caracterizaron reológicamente. En las películas se evaluaron las propiedades físicas (color, grosor, humedad y solubilidad), la permeabilidad al vapor de agua y al oxígeno (10 y 25 °C) y las propiedades mecánicas. La actividad antibacterial se evaluó durante 21 días contra Eschericia coli, Staphylococcus aureus y Listeria monocytogenes por difusión en agar mediante el conteo de coliformes aerobios totales y fecales. Todas las SFP presentaron comportamiento pseudoplástico. La adición de Q aumentó la tensión a la fractura (TF) y disminuyó el porcentaje de elongación (%E) en todas las películas; siendo la formulación Oxidado-Q la que presentó el mayor incremento ( 200 %) en TF y la menor disminución (38 %) en %E. Todas formulaciones con Q presentaron actividad antibacterial, la cual fue mayor en la película Oxidado-Q y disminuyó con el tiempo de evaluación. En general, los resultados indicaron que la película Oxidado-Q puede representar una formulación conveniente como envase antibacteriano con adecuadas propiedades físicas, mecánicas y de barrera. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arijaje, E.O., Wang, Y.-J., Shinn, S., Shah, U. y Proctor, A. 2014. Effects of chemical and enzymatic modifications on starch–stearic acid complex formation. Journal of Agricultural and Food Chemistry. 62(13): 2963-2972. DOI: https://doi.org/10.1021/jf5004682

ASTM-882-95a. 1995. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.

ASTM-D3985-05. 2010. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.

ASTM-E96-80. 2016. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.

Basiak, E., Lenart, A. y Debeaufort, F. 2017. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. Journal of the Science of Food and Agriculture. 97(3): 858-867. DOI: https://doi.org/10.1002/jsfa.7807

Berry, C.S. 1986. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science. 4(4): 301-314. DOI: https://doi.org/10.1016/S0733-5210(86)80034-0

Biduski, B., Silva, F.T.d., Silva, W.M.d., Halal, S.L.d.M.E., Pinto, V.Z., Dias, A.R.G. y Zavareze, E.d.R. 2017. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry. 214: 53-60. DOI: https://doi.org/10.1016/j.foodchem.2016.07.039

Bof, M.J., Bordagaray, V.C., Locaso, D.E. y García, M.A. 2015. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids. 51: 281-294. DOI: https://doi.org/10.1016/j.foodhyd.2015.05.018

Bonilla, J., Atarés, L., Vargas, M. y Chiralt, A. 2013. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering. 114(3): 303-312. DOI: https://doi.org/10.1016/j.jfoodeng.2012.08.005

Cao, Y., Warner, R.D. y Fang, Z. 2019. Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control. 101: 9-16. DOI: https://doi.org/10.1016/j.foodcont.2019.02.013

Chattopadhyay, S., Singhal, R.S. y Kulkarni, P.R. 1997. Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications. Carbohydrate Polymers. 34(4): 203-212. DOI: https://doi.org/10.1016/S0144-8617(97)87306-7

Chávez-Murillo, C.E., Wang, Y.-J. y Bello-Pérez, L.A. 2008. Morphological, physicochemical and structural characteristics of oxidized barley and corn starches. Starch - Stärke. 60(11): 634-645. DOI: https://doi.org/10.1002/star.200800016

Cheng, W., Chen, J., Liu, D., Ye, X. y Ke, F. 2010. Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films. Carbohydrate Polymers. 81(3): 707-711. DOI: https://doi.org/10.1016/j.carbpol.2010.03.043

Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L. y Del Nobile, M.A. 2008. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering. 88(2): 159-168. DOI: https://doi.org/10.1016/j.jfoodeng.2008.02.002

Dang, K.M. y Yoksan, R. 2015. Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers. 115: 575-581. DOI: https://doi.org/10.1016/j.carbpol.2014.09.005

Dang, K.M. y Yoksan, R. 2016. Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydrate Polymers. 150: 40-47. DOI: https://doi.org/10.1016/j.carbpol.2016.04.113

Das, D.K., Dutta, H. y Mahanta, C.L. 2013. Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology. 50(1): 272-278. DOI: https://doi.org/10.1016/j.lwt.2012.05.018

Delville, J., Joly, C., Dole, P. y Bliard, C. 2003. Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers. 53(4): 373-381. DOI: https://doi.org/10.1016/S0144-8617(03)00141-3

El Halal, S.L.M., Colussi, R., Deon, V.G., Pinto, V.Z., Villanova, F.A., Carreño, N.L.V., Dias, A.R.G. y Zavareze, E.d.R. 2015. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers. 133: 644-653. DOI: https://doi.org/10.1016/j.carbpol.2015.07.024

Famá, L., Goyanes, S. y Gerschenson, L. 2007. Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers. 70(3): 265-273. DOI: https://doi.org/10.1016/j.carbpol.2007.04.003

Fang, Z., Lin, D., Warner, R.D. y Ha, M. 2018. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chemistry. 260: 90-96. DOI: https://doi.org/10.1016/j.foodchem.2018.04.005

Fonseca, L.M., Gonçalves, J.R., El Halal, S.L.M., Pinto, V.Z., Dias, A.R.G., Jacques, A.C. y Zavareze, E.d.R. 2015. Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT - Food Science and Technology. 60(2, Part 1): 714-720. DOI: https://doi.org/10.1016/j.lwt.2014.10.052

Fox, E., Shotton, K. y Ulrich, C. 1995. Sigma-Stat: Manual del usuario, versión 2.1 para Windows 95 NT y 3.1. Editorial Jandel Scientific Co. EUA.

Galdeano, M.C., Wilhelm, A.E., Grossmann, M.V.E. y Mali, S. 2014. Effect of processing and enviromental conditions in the properties of oat starch biodegradable materials. Polímeros. 24(1): 80-87. DOI: https://doi.org/10.4322/polimeros.2013.073

García-Tejeda, Y.V., López-González, C., Pérez-Orozco, J.P., Rendón-Villalobos, R., Jiménez-Pérez, A., Flores-Huicochea, E., Solorza-Feria, J. y Bastida, C.A. 2013. Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage. LWT - Food Science and Technology. 54(2): 447-455. DOI: https://doi.org/10.1016/j.lwt.2013.05.041

García, M.R.C., Posligua, V.G.E., Mantuano, M.H.L., Basurto, R.M., Montes, Y.M.G. y Delgado, E.G.L. 2017. Recubrimiento comestible de quitosano, almidón de yuca y aceite esencial de canela para conservar pera (Pyrus communis L. cv.“Bosc”). La Técnica: Revista de las Agrociencias. ISSN 2477-8982. 2: 42-53. DOI: https://doi.org/10.33936/la_tecnica.v0i0.970

Hasan, M., Rusman, R., Khaldun, I., Ardana, L., Mudatsir, M. y Fansuri, H. 2020. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules. 163: 766-775. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.076

Hernandez-Izquierdo, V.M. y Krochta, J.M. 2008. Thermoplastic processing of proteins for film formation—a review. Journal of Food Science. 73(2): R30-R39. DOI: https://doi.org/10.1111/j.1750-3841.2007.00636.x

Hu, G., Chen, J. y Gao, J. 2009. Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers. 76(2): 291-298. DOI: https://doi.org/10.1016/j.carbpol.2008.10.032

Jiménez-Regalado, E.J., Caicedo, C., Fonseca-García, A., Rivera-Vallejo, C.C. y Aguirre-Loredo, R.Y. 2021. Preparation and Physicochemical Properties of Modified Corn Starch–Chitosan Biodegradable Films. Polymers, 13: 4431. DOI: https://doi.org/10.3390/polym13244431

Kuakpetoon, D. y Wang, Y.-J. 2001. Characterization of different starches oxidized by hypochlorite. Starch - Stärke. 53(5): 211-218. DOI: https://doi.org/10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-M

Lago-Vanzela, E.S., do Nascimento, P., Fontes, E.A.F., Mauro, M.A. y Kimura, M. 2013. Edible coatings from native and modified starches retain carotenoids in pumpkin during drying. LWT - Food Science and Technology. 50(2): 420-425. DOI: https://doi.org/10.1016/j.lwt.2012.09.003

Laohakunjit, N. y Noomhorm, A. 2004. Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch - Stärke. 56(8): 348-356. DOI: https://doi.org/10.1002/star.200300249

Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J. y Ding, Y. 2014. Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids. 36: 45-52. DOI: https://doi.org/10.1016/j.foodhyd.2013.08.013

López-Díaz, A.S., Ríos-Corripio, M.A., Ramírez-Corona, N., López-Malo, A. y Palou, E. 2018. Efecto de la radiación ultravioleta de onda corta sobre algunas propiedades de películas comestibles elaboradas con jugo de granada y quitosano. Revista Mexicana de Ingeniería Química. 17(1): 63-73. DOI: https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Lopez

López-Mata, M.A., García-González, G., Valbuena-Gregorio, E., Ruiz-Cruz, S., Zamudio-Flores, P.B., Burruel-Ibarra, S.E., Morales-Figueroa, G.G. y Quihui-Cota, L. 2016. Development and characteristics of biodegradable Aloe-gel/egg white films. Journal of Applied Polymer Science. 133(40). DOI: https://doi.org/10.1002/app.44067

Lopez, O., Garcia, M.A., Villar, M.A., Gentili, A., Rodriguez, M.S. y Albertengo, L. 2014. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology. 57(1): 106-115. DOI: https://doi.org/10.1016/j.lwt.2014.01.024

López, O.V., García, M.A. y Zaritzky, N.E. 2008. Film forming capacity of chemically modified corn starches. Carbohydrate Polymers. 73(4): 573-581. DOI: https://doi.org/10.1016/j.carbpol.2007.12.023

López, O.V., Zaritzky, N.E. y García, M.A. 2010. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering. 100(1): 160-168. DOI: https://doi.org/10.1016/j.jfoodeng.2010.03.041

Luchese, C.L., Pavoni, J.M.F., dos Santos, N.Z., Quines, L.K., Pollo, L.D., Spada, J.C. y Tessaro, I.C. 2018. Effect of chitosan addition on the properties of films prepared with corn and cassava starches. Journal of Food Science and Technology. 55(8): 2963-2973. DOI: https://doi.org/10.1007/s13197-018-3214-y

Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N. y Zaritzky, N.E. 2006. Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering. 75(4): 453-460. DOI: https://doi.org/10.1016/j.jfoodeng.2005.04.031

Mali, S., Sakanaka, L.S., Yamashita, F. y Grossmann, M.V.E. 2005. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers. 60(3): 283-289. DOI: https://doi.org/10.1016/j.carbpol.2005.01.003

Martinez-Alvarenga, M.S., Martinez-Rodriguez, E.Y., Garcia-Amezquita, L.E., Olivas, G.I., Zamudio-Flores, P.B., Acosta-Muniz, C.H. y Sepulveda, D.R. 2014. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate – Maltodextrin conjugates. Food Hydrocolloids. 38: 110-118. DOI: https://doi.org/10.1016/j.foodhyd.2013.11.006

McHugh, T. y Krochta, J.M.1994. Edible coatings and films to improve food quality. En: Edible Coatings and Films to Improve Food Quality. J. M. Krochta, E. A. Baldwin y M. O. Nisperos-Carriedo (eds.). pp. 139-187. Technomic Publishing Company. Lancaster, Pennsylvania, USA.

Mehdizadeh, T., Tajik, H., Langroodi, A.M., Molaei, R. y Mahmoudian, A. 2020. Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef. Meat Science. 163: 108073. DOI: https://doi.org/10.1016/j.meatsci.2020.108073

Mei, J., Yuan, Y., Wu, Y. y Li, Y. 2013. Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules. 57: 17-21. DOI: https://doi.org/10.1016/j.ijbiomac.2013.03.003

Mendes, J.F., Paschoalin, R.T., Carmona, V.B., Sena Neto, A.R., Marques, A.C.P., Marconcini, J.M., Mattoso, L.H.C., Medeiros, E.S. y Oliveira, J.E. 2016. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 137: 452-458. DOI: https://doi.org/10.1016/j.carbpol.2015.10.093

Nourmohammadi, J., Ghaee, A. y Liavali, S.H. 2016. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydrate Polymers. 138: 172-179. DOI: https://doi.org/10.1016/j.carbpol.2015.11.055

Osundahunsi, O.F., Seidu, K.T. y Mueller, R. 2014. Effect of presence of sulphurdioxide on acetylation and sorption isotherm of acetylated starches from cultivars of cassava. Food Chemistry. 151: 168-174. DOI: https://doi.org/10.1016/j.foodchem.2013.11.020

Ozdemir, M. y Floros, J.D. 2008. Optimization of edible whey protein films containing preservatives for mechanical and optical properties. Journal of Food Engineering. 84(1): 116-123. DOI: https://doi.org/10.1016/j.jfoodeng.2007.04.029

Palma-Rodríguez, H.M., Aguirre-Álvarez, G., Chavarría-Hernández, N., Rodríguez-Hernández, A.I., Bello-Pérez, L.A. y Vargas-Torres, A. 2012. Oxidized banana starch–polyvinyl alcohol film: Partial characterization. Starch - Stärke. 64(11): 882-889. DOI: https://doi.org/10.1002/star.201200035

Pérez-Gallardo, A., Bello-Pérez, L.A., García-Almendárez, B., Montejano-Gaitán, G., Barbosa-Cánovas, G. y Regalado, C. 2012. Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch - Stärke. 64(1): 27-36. DOI: https://doi.org/10.1002/star.201100042

Rojas-Graü, M.A., Avena-Bustillos, R.J., Friedman, M., Henika, P.R., Martín-Belloso, O. y McHugh, T.H. 2006. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. Journal of Agricultural and Food Chemistry. 54(24): 9262-9267. DOI: https://doi.org/10.1021/jf061717u

Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A. y Fernández-López, J. 2013. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control. 30(2): 386-392. DOI: https://doi.org/10.1016/j.foodcont.2012.07.052

Rutenberg, M.W. y Solarek, D.1984. Starch derivatives: production and uses. En: Starch: Chemistry and Technology. R. L. Whistler, J. N. Bemiller y E. F. Paschall (eds.). 2 ed., pp. 311-388. Academic Press. San Diego, USA. DOI: https://doi.org/10.1016/B978-0-12-746270-7.50016-1

Salleh, E., Muhammad, I.I. y Pahlawi, Q.A. 2014. Spectrum Activity and Lauric Acid Release Behaviour of Antimicrobial Starch-based Film. Procedia Chemistry. 9: 11-22. DOI: https://doi.org/10.1016/j.proche.2014.05.003

Sánchez-Rivera, M.M., García-Suárez, F.J.L., Velázquez del Valle, M., Gutierrez-Meraz, F. y Bello-Pérez, L.A. 2005. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers. 62(1): 50-56. DOI: https://doi.org/10.1016/j.carbpol.2005.07.005

Seib, P.A. y Woo, K. 1999. Food grade starch resistant to α-amylase and method of preparing the same. U. S. patent 5,855,946 A.

Shapi’i, R.A., Othman, S.H., Nordin, N., Kadir Basha, R. y Nazli Naim, M. 2020. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydrate Polymers. 230: 115602. DOI: https://doi.org/10.1016/j.carbpol.2019.115602

Shariatinia, Z. y Fazli, M. 2015. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocolloids. 46: 112-124. DOI: https://doi.org/10.1016/j.foodhyd.2014.12.026

Shen, X.L., Wu, J.M., Chen, Y. y Zhao, G. 2010. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids. 24(4): 285-290. DOI: https://doi.org/10.1016/j.foodhyd.2009.10.003

Shin, M., Woo, K. y Seib, P.A. 2003. Hot-water solubilities and water sorptions of resistant starches at 25°c. Cereal Chemistry. 80(5): 564-566. DOI: https://doi.org/10.1094/CCHEM.2003.80.5.564

Singh, B. y Sharma, N. 2008. Mechanistic implications of plastic degradation. Polymer Degradation and Stability. 93(3): 561-584. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.11.008

Smith, R.J.1967. Production and use of hypochlorite oxidized starches. En: Starch Chemistry and Technology. Vol. 2. R. L. Whistler y E. F. Paschall (eds.). pp. 620-625. Academic Press. New York, USA.

Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A.S. y Fernandes, F.M.B. 2017. Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products. 107: 565-572. DOI: https://doi.org/10.1016/j.indcrop.2017.04.056

Steffe, J.F. 1996. Rheological Methods in Food Process Engineering. Freeman press. East Lancing. Michigan.

Sun, X., Wang, Z., Kadouh, H. y Zhou, K. 2014. The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT - Food Science and Technology. 57(1): 83-89. DOI: https://doi.org/10.1016/j.lwt.2013.11.037

Teodoro, A.P., Mali, S., Romero, N. y de Carvalho, G.M. 2015. Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydrate Polymers. 126: 9-16. DOI: https://doi.org/10.1016/j.carbpol.2015.03.021

Tirado-Gallegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J.d.J., Rios-Velasco, C., Olivas Orozco, G.I., Espino-Díaz, M., Baeza-Jiménez, R., Buenrostro-Figueroa, J.J., Aguilar-González, M.A., Lardizábal-Gutiérrez, D., Hernández-González, M., Hernández-Centeno, F. y López-De la Peña, H.Y. 2018. Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings. 8(11): 384. DOI: https://doi.org/10.3390/coatings8110384

Tripathi, S., Mehrotra, G.K. y Dutta, P.K. 2009. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules. 45(4): 372-376. DOI: https://doi.org/10.1016/j.ijbiomac.2009.07.006

Valencia-Sullca, C., Vargas, M., Atarés, L. y Chiralt, A. 2018. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids. 75: 107-115. DOI: https://doi.org/10.1016/j.foodhyd.2017.09.008

Walpole, E.R., Myers, H.R. y Myers, L.S. 1999. Probabilidad y Estadística Para Ingenieros. Prentice-Hall Hispanoamericana, S. A. México.

Wang, Y.-J. y Wang, L. 2002. Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch - Stärke. 54(1): 25-30. DOI: https://doi.org/10.1002/1521-379X(200201)54:1<25::AID-STAR25>3.0.CO;2-T

Wu, H., Liu, C., Chen, J., Chen, Y., Anderson, D.P. y Chang, P.R. 2010. Oxidized pea starch/chitosan composite films: Structural characterization and properties. Journal of applied polymer science. 118(5): 3082-3088. DOI: https://doi.org/10.1002/app.32753

Wu, Y., Geng, F., Chang, P.R., Yu, J. y Ma, X. 2009. Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers. 76(2): 299-304. DOI: https://doi.org/10.1016/j.carbpol.2008.10.031

Wurzburg, O.B.1986. Converted starches. En: Modified Starches: Properties and Uses. O. B. Wurzburg (ed.). pp. 17–40. CRC Press. Boca Raton, Florida, USA.

Xie, Y., Liu, X. y Chen, Q. 2007. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydrate polymers, 69(1): 142-147. DOI: https://doi.org/10.1016/j.carbpol.2006.09.010

Xiong, Y., Chen, M., Warner, R.D. y Fang, Z. 2020. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control. 110: 107018. DOI: https://doi.org/10.1016/j.foodcont.2019.107018

Zamudio-Flores, P.B. y Bello-Pérez, L.A. 2013. Elaboración y caracterización de películas de glicoproteínas obtenidas mediante reacción de Maillard utilizando almidón acetilado y aislado proteico de suero lácteo. Revista Mexicana de Ingeniería Química. 12(3): 401-413.

Zamudio-Flores, P.B., Ochoa-Reyes, E., Ornelas-Paz, J.d.J., Tirado-Gallegos, J.M., Bello-Pérez, L.A., Rubio-Rios, A. y Cárdenas-Félix, R.G. 2015. Caracterización fisicoquímica, mecánica y estructural de películas de almidones oxidados de avena y plátano adicionadas con betalaínas. Agrociencia. 49: 483-498.

Zamudio-Flores, P.B., Torres, A.V., Salgado-Delgado, R. y Bello-Pérez, L.A. 2010. Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch and modified starch/chitosan blend films. Journal of Applied Polymer Science. 115(2): 991-998. DOI: https://doi.org/10.1002/app.31047

Zamudio-Flores, P.B., Vargas-Torres, A., Pérez-González, J., Bosquez-Molina, E. y Bello-Pérez, L.A. 2006. Films prepared with oxidized banana starch: Mechanical and barrier properties. Starch - Stärke. 58(6): 274-282. DOI: https://doi.org/10.1002/star.200500474

Zavareze, E.d.R., Pinto, V.Z., Klein, B., El Halal, S.L.M., Elias, M.C., Prentice-Hernández, C. y Dias, A.R.G. 2012. Development of oxidised and heat–moisture treated potato starch film. Food Chemistry. 132(1): 344-350. DOI: https://doi.org/10.1016/j.foodchem.2011.10.090

Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F. y Qin, C. 2019. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules. 135: 344-352. DOI: https://doi.org/10.1016/j.ijbiomac.2019.05.151

Zhong, Y., Song, X. y Li, Y. 2011. Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers. 84(1): 335-342. DOI: https://doi.org/10.1016/j.carbpol.2010.11.041

Descargas

Publicado

2024-04-08

Cómo citar

Tirado-Gallegos, J. M., Zamudio Flores, P. B., Bustillos-Rodríguez, J. C., Acosta-Muñiz, C. H., Calderón-Loera, R., López-Mata, M. Ángel, … Espinosa-Solis, V. (2024). Estudio preliminar de las propiedades físicas y antibacteriales de películas de almidones modificados de avena mezclados con quitosano. Biotecnia, 26, 197–210. https://doi.org/10.18633/biotecnia.v26.2072

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.