Preliminary study of physics and antibacterial properties of films of modified starches oats mixed with chitosan
DOI:
https://doi.org/10.18633/biotecnia.v26.2072Keywords:
Degradable films, autoclaving, lintnerization, antibacterial property, water vapor permeability, solubilityAbstract
One physical modification (autoclaving) and five chemical modifications (lintnerization, crosslinking, acetylation, hydroxypropylation, and oxidation) were performed on the native oat starch. The starches were mixed with chitosan (Ch) and plasticizer (glycerol) to make films. The film-forming solutions (FFS) were characterized rheologically. The films were evaluated for physical properties (color, thickness, humidity and solubility), water vapor and oxygen permeability (10 and 25 °C), and mechanical properties. The antibacterial activity was evaluated during 21 days against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes by diffusion in agar and counting total aerobic and fecal coliforms. All the FFS presented a pseudoplastic-type behavior. The addition of Ch increased the stress at fracture (TF) and decreased the percentage elongation (%E) in all the films; being the Oxidized-Ch formulation the one that presented the greatest increase ( 200 %) in TF and the smallest decrease (38 %) in %E. All formulations with Ch presented antibacterial activity, which was higher in the Oxidized-Ch film and decreased with the evaluation time. The results generally indicated that the Oxidized-Ch film may represent a suitable formulation as antibacterial packaging with adequate physical, mechanical, and barrier properties.
Downloads
References
Arijaje, E.O., Wang, Y.-J., Shinn, S., Shah, U. y Proctor, A. 2014. Effects of chemical and enzymatic modifications on starch–stearic acid complex formation. Journal of Agricultural and Food Chemistry. 62(13): 2963-2972.
ASTM-882-95a. 1995. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.
ASTM-D3985-05. 2010. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.
ASTM-E96-80. 2016. American Society of Testing Materials. ASTM International. West Conshohocken, PA, USA.
Basiak, E., Lenart, A. y Debeaufort, F. 2017. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. Journal of the Science of Food and Agriculture. 97(3): 858-867.
Berry, C.S. 1986. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science. 4(4): 301-314.
Biduski, B., Silva, F.T.d., Silva, W.M.d., Halal, S.L.d.M.E., Pinto, V.Z., Dias, A.R.G. y Zavareze, E.d.R. 2017. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry. 214: 53-60.
Bof, M.J., Bordagaray, V.C., Locaso, D.E. y García, M.A. 2015. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids. 51: 281-294.
Bonilla, J., Atarés, L., Vargas, M. y Chiralt, A. 2013. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering. 114(3): 303-312.
Cao, Y., Warner, R.D. y Fang, Z. 2019. Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control. 101: 9-16.
Chattopadhyay, S., Singhal, R.S. y Kulkarni, P.R. 1997. Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications. Carbohydrate Polymers. 34(4): 203-212.
Chávez-Murillo, C.E., Wang, Y.-J. y Bello-Pérez, L.A. 2008. Morphological, physicochemical and structural characteristics of oxidized barley and corn starches. Starch - Stärke. 60(11): 634-645.
Cheng, W., Chen, J., Liu, D., Ye, X. y Ke, F. 2010. Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films. Carbohydrate Polymers. 81(3): 707-711.
Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L. y Del Nobile, M.A. 2008. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering. 88(2): 159-168.
Dang, K.M. y Yoksan, R. 2015. Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers. 115: 575-581.
Dang, K.M. y Yoksan, R. 2016. Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydrate Polymers. 150: 40-47.
Das, D.K., Dutta, H. y Mahanta, C.L. 2013. Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology. 50(1): 272-278.
Delville, J., Joly, C., Dole, P. y Bliard, C. 2003. Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers. 53(4): 373-381.
El Halal, S.L.M., Colussi, R., Deon, V.G., Pinto, V.Z., Villanova, F.A., Carreño, N.L.V., Dias, A.R.G. y Zavareze, E.d.R. 2015. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers. 133: 644-653.
Famá, L., Goyanes, S. y Gerschenson, L. 2007. Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydrate Polymers. 70(3): 265-273.
Fang, Z., Lin, D., Warner, R.D. y Ha, M. 2018. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chemistry. 260: 90-96.
Fonseca, L.M., Gonçalves, J.R., El Halal, S.L.M., Pinto, V.Z., Dias, A.R.G., Jacques, A.C. y Zavareze, E.d.R. 2015. Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT - Food Science and Technology. 60(2, Part 1): 714-720.
Fox, E., Shotton, K. y Ulrich, C. 1995. Sigma-Stat: Manual del usuario, versión 2.1 para Windows 95 NT y 3.1. Editorial Jandel Scientific Co. EUA.
Galdeano, M.C., Wilhelm, A.E., Grossmann, M.V.E. y Mali, S. 2014. Effect of processing and enviromental conditions in the properties of oat starch biodegradable materials. Polímeros. 24(1): 80-87.
García-Tejeda, Y.V., López-González, C., Pérez-Orozco, J.P., Rendón-Villalobos, R., Jiménez-Pérez, A., Flores-Huicochea, E., Solorza-Feria, J. y Bastida, C.A. 2013. Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage. LWT - Food Science and Technology. 54(2): 447-455.
García, M.R.C., Posligua, V.G.E., Mantuano, M.H.L., Basurto, R.M., Montes, Y.M.G. y Delgado, E.G.L. 2017. Recubrimiento comestible de quitosano, almidón de yuca y aceite esencial de canela para conservar pera (Pyrus communis L. cv.“Bosc”). La Técnica: Revista de las Agrociencias. ISSN 2477-8982. 2: 42-53.
Hasan, M., Rusman, R., Khaldun, I., Ardana, L., Mudatsir, M. y Fansuri, H. 2020. Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: Barrier, thermo-mechanical, antioxidant, and antimicrobial properties. International Journal of Biological Macromolecules. 163: 766-775.
Hernandez-Izquierdo, V.M. y Krochta, J.M. 2008. Thermoplastic processing of proteins for film formation—a review. Journal of Food Science. 73(2): R30-R39.
Hu, G., Chen, J. y Gao, J. 2009. Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers. 76(2): 291-298.
Jiménez-Regalado, E.J., Caicedo, C., Fonseca-García, A., Rivera-Vallejo, C.C. y Aguirre-Loredo, R.Y. 2021. Preparation and Physicochemical Properties of Modified Corn Starch–Chitosan Biodegradable Films. Polymers, 13: 4431.
Kuakpetoon, D. y Wang, Y.-J. 2001. Characterization of different starches oxidized by hypochlorite. Starch - Stärke. 53(5): 211-218.
Lago-Vanzela, E.S., do Nascimento, P., Fontes, E.A.F., Mauro, M.A. y Kimura, M. 2013. Edible coatings from native and modified starches retain carotenoids in pumpkin during drying. LWT - Food Science and Technology. 50(2): 420-425.
Laohakunjit, N. y Noomhorm, A. 2004. Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch - Stärke. 56(8): 348-356.
Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J. y Ding, Y. 2014. Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids. 36: 45-52.
López-Díaz, A.S., Ríos-Corripio, M.A., Ramírez-Corona, N., López-Malo, A. y Palou, E. 2018. Efecto de la radiación ultravioleta de onda corta sobre algunas propiedades de películas comestibles elaboradas con jugo de granada y quitosano. Revista Mexicana de Ingeniería Química. 17(1): 63-73.
López-Mata, M.A., García-González, G., Valbuena-Gregorio, E., Ruiz-Cruz, S., Zamudio-Flores, P.B., Burruel-Ibarra, S.E., Morales-Figueroa, G.G. y Quihui-Cota, L. 2016. Development and characteristics of biodegradable Aloe-gel/egg white films. Journal of Applied Polymer Science. 133(40).
Lopez, O., Garcia, M.A., Villar, M.A., Gentili, A., Rodriguez, M.S. y Albertengo, L. 2014. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology. 57(1): 106-115.
López, O.V., García, M.A. y Zaritzky, N.E. 2008. Film forming capacity of chemically modified corn starches. Carbohydrate Polymers. 73(4): 573-581.
López, O.V., Zaritzky, N.E. y García, M.A. 2010. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering. 100(1): 160-168.
Luchese, C.L., Pavoni, J.M.F., dos Santos, N.Z., Quines, L.K., Pollo, L.D., Spada, J.C. y Tessaro, I.C. 2018. Effect of chitosan addition on the properties of films prepared with corn and cassava starches. Journal of Food Science and Technology. 55(8): 2963-2973.
Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N. y Zaritzky, N.E. 2006. Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering. 75(4): 453-460.
Mali, S., Sakanaka, L.S., Yamashita, F. y Grossmann, M.V.E. 2005. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers. 60(3): 283-289.
Martinez-Alvarenga, M.S., Martinez-Rodriguez, E.Y., Garcia-Amezquita, L.E., Olivas, G.I., Zamudio-Flores, P.B., Acosta-Muniz, C.H. y Sepulveda, D.R. 2014. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate – Maltodextrin conjugates. Food Hydrocolloids. 38: 110-118.
McHugh, T. y Krochta, J.M.1994. Edible coatings and films to improve food quality. En: Edible Coatings and Films to Improve Food Quality. J. M. Krochta, E. A. Baldwin y M. O. Nisperos-Carriedo (eds.). pp. 139-187. Technomic Publishing Company. Lancaster, Pennsylvania, USA.
Mehdizadeh, T., Tajik, H., Langroodi, A.M., Molaei, R. y Mahmoudian, A. 2020. Chitosan-starch film containing pomegranate peel extract and Thymus kotschyanus essential oil can prolong the shelf life of beef. Meat Science. 163: 108073.
Mei, J., Yuan, Y., Wu, Y. y Li, Y. 2013. Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules. 57: 17-21.
Mendes, J.F., Paschoalin, R.T., Carmona, V.B., Sena Neto, A.R., Marques, A.C.P., Marconcini, J.M., Mattoso, L.H.C., Medeiros, E.S. y Oliveira, J.E. 2016. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 137: 452-458.
Nourmohammadi, J., Ghaee, A. y Liavali, S.H. 2016. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydrate Polymers. 138: 172-179.
Osundahunsi, O.F., Seidu, K.T. y Mueller, R. 2014. Effect of presence of sulphurdioxide on acetylation and sorption isotherm of acetylated starches from cultivars of cassava. Food Chemistry. 151: 168-174.
Ozdemir, M. y Floros, J.D. 2008. Optimization of edible whey protein films containing preservatives for mechanical and optical properties. Journal of Food Engineering. 84(1): 116-123.
Palma-Rodríguez, H.M., Aguirre-Álvarez, G., Chavarría-Hernández, N., Rodríguez-Hernández, A.I., Bello-Pérez, L.A. y Vargas-Torres, A. 2012. Oxidized banana starch–polyvinyl alcohol film: Partial characterization. Starch - Stärke. 64(11): 882-889.
Pérez-Gallardo, A., Bello-Pérez, L.A., García-Almendárez, B., Montejano-Gaitán, G., Barbosa-Cánovas, G. y Regalado, C. 2012. Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch - Stärke. 64(1): 27-36.
Rojas-Graü, M.A., Avena-Bustillos, R.J., Friedman, M., Henika, P.R., Martín-Belloso, O. y McHugh, T.H. 2006. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. Journal of Agricultural and Food Chemistry. 54(24): 9262-9267.
Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A. y Fernández-López, J. 2013. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control. 30(2): 386-392.
Rutenberg, M.W. y Solarek, D.1984. Starch derivatives: production and uses. En: Starch: Chemistry and Technology. R. L. Whistler, J. N. Bemiller y E. F. Paschall (eds.). 2 ed., pp. 311-388. Academic Press. San Diego, USA.
Salleh, E., Muhammad, I.I. y Pahlawi, Q.A. 2014. Spectrum Activity and Lauric Acid Release Behaviour of Antimicrobial Starch-based Film. Procedia Chemistry. 9: 11-22.
Sánchez-Rivera, M.M., García-Suárez, F.J.L., Velázquez del Valle, M., Gutierrez-Meraz, F. y Bello-Pérez, L.A. 2005. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers. 62(1): 50-56.
Seib, P.A. y Woo, K. 1999. Food grade starch resistant to α-amylase and method of preparing the same. U. S. patent 5,855,946 A.
Shapi’i, R.A., Othman, S.H., Nordin, N., Kadir Basha, R. y Nazli Naim, M. 2020. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydrate Polymers. 230: 115602.
Shariatinia, Z. y Fazli, M. 2015. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocolloids. 46: 112-124.
Shen, X.L., Wu, J.M., Chen, Y. y Zhao, G. 2010. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids. 24(4): 285-290.
Shin, M., Woo, K. y Seib, P.A. 2003. Hot-water solubilities and water sorptions of resistant starches at 25°c. Cereal Chemistry. 80(5): 564-566.
Singh, B. y Sharma, N. 2008. Mechanistic implications of plastic degradation. Polymer Degradation and Stability. 93(3): 561-584.
Smith, R.J.1967. Production and use of hypochlorite oxidized starches. En: Starch Chemistry and Technology. Vol. 2. R. L. Whistler y E. F. Paschall (eds.). pp. 620-625. Academic Press. New York, USA.
Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A.S. y Fernandes, F.M.B. 2017. Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products. 107: 565-572.
Steffe, J.F. 1996. Rheological Methods in Food Process Engineering. Freeman press. East Lancing. Michigan.
Sun, X., Wang, Z., Kadouh, H. y Zhou, K. 2014. The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT - Food Science and Technology. 57(1): 83-89.
Teodoro, A.P., Mali, S., Romero, N. y de Carvalho, G.M. 2015. Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydrate Polymers. 126: 9-16.
Tirado-Gallegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J.d.J., Rios-Velasco, C., Olivas Orozco, G.I., Espino-Díaz, M., Baeza-Jiménez, R., Buenrostro-Figueroa, J.J., Aguilar-González, M.A., Lardizábal-Gutiérrez, D., Hernández-González, M., Hernández-Centeno, F. y López-De la Peña, H.Y. 2018. Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings. 8(11): 384.
Tripathi, S., Mehrotra, G.K. y Dutta, P.K. 2009. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules. 45(4): 372-376.
Valencia-Sullca, C., Vargas, M., Atarés, L. y Chiralt, A. 2018. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids. 75: 107-115.
Walpole, E.R., Myers, H.R. y Myers, L.S. 1999. Probabilidad y Estadística Para Ingenieros. Prentice-Hall Hispanoamericana, S. A. México.
Wang, Y.-J. y Wang, L. 2002. Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch - Stärke. 54(1): 25-30.
Wu, H., Liu, C., Chen, J., Chen, Y., Anderson, D.P. y Chang, P.R. 2010. Oxidized pea starch/chitosan composite films: Structural characterization and properties. Journal of applied polymer science. 118(5): 3082-3088.
Wu, Y., Geng, F., Chang, P.R., Yu, J. y Ma, X. 2009. Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers. 76(2): 299-304.
Wurzburg, O.B.1986. Converted starches. En: Modified Starches: Properties and Uses. O. B. Wurzburg (ed.). pp. 17–40. CRC Press. Boca Raton, Florida, USA.
Xie, Y., Liu, X. y Chen, Q. 2007. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydrate polymers, 69(1): 142-147.
Xiong, Y., Chen, M., Warner, R.D. y Fang, Z. 2020. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control. 110: 107018.
Zamudio-Flores, P.B. y Bello-Pérez, L.A. 2013. Elaboración y caracterización de películas de glicoproteínas obtenidas mediante reacción de Maillard utilizando almidón acetilado y aislado proteico de suero lácteo. Revista Mexicana de Ingeniería Química. 12(3): 401-413.
Zamudio-Flores, P.B., Ochoa-Reyes, E., Ornelas-Paz, J.d.J., Tirado-Gallegos, J.M., Bello-Pérez, L.A., Rubio-Rios, A. y Cárdenas-Félix, R.G. 2015. Caracterización fisicoquímica, mecánica y estructural de películas de almidones oxidados de avena y plátano adicionadas con betalaínas. Agrociencia. 49: 483-498.
Zamudio-Flores, P.B., Torres, A.V., Salgado-Delgado, R. y Bello-Pérez, L.A. 2010. Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch and modified starch/chitosan blend films. Journal of Applied Polymer Science. 115(2): 991-998.
Zamudio-Flores, P.B., Vargas-Torres, A., Pérez-González, J., Bosquez-Molina, E. y Bello-Pérez, L.A. 2006. Films prepared with oxidized banana starch: Mechanical and barrier properties. Starch - Stärke. 58(6): 274-282.
Zavareze, E.d.R., Pinto, V.Z., Klein, B., El Halal, S.L.M., Elias, M.C., Prentice-Hernández, C. y Dias, A.R.G. 2012. Development of oxidised and heat–moisture treated potato starch film. Food Chemistry. 132(1): 344-350.
Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F. y Qin, C. 2019. Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules. 135: 344-352.
Zhong, Y., Song, X. y Li, Y. 2011. Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers. 84(1): 335-342.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.