Propiedades fisicoquímicas y digestibilidad in vitro de almidones resistentes obtenidos por autoclaveado y lintnerización a partir de almidones nativos de maíz, manzana y malanga

Propiedades fisicoquímicas y digestibilidad de almidones resistentes

Autores/as

  • V Aguilar-Mendoza Centro de Investigacion en Alimentación y Desarrollo, A.C. Unidad Cuauhtemoc, Fisiología y Tecnologia de Alimentos de la Zona Templada. Avenida Rio Conchos s/n, Parque Industrial, Apartado postal 781, C.P. 31570, Ciudad Cuauhtemoc, Chihuahua, Mexico.
  • PB Zamudio Flores Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Cuauhtémoc, Fisiología y Tecnología de Alimentos de la Zona Templada https://orcid.org/0000-0002-8028-8563
  • FJ Molina-Corral Centro de Investigacion en Alimentación y Desarrollo, A.C. Unidad Cuauhtemoc, Fisiología y Tecnologia de Alimentos de la Zona Templada. Avenida Rio Conchos s/n, Parque Industrial, Apartado postal 781, C.P. 31570, Ciudad Cuauhtemoc, Chihuahua, Mexico.
  • GI Olivas-Orozco Centro de Investigacion en Alimentación y Desarrollo, A.C. Unidad Cuauhtemoc, Fisiología y Tecnologia de Alimentos de la Zona Templada. Avenida Rio Conchos s/n, Parque Industrial, Apartado postal 781, C.P. 31570, Ciudad Cuauhtemoc, Chihuahua, Mexico.
  • G Vela-Gutiérrez Laboratorio de Investigacion y Desarrollo de Productos Funcionales. Facultad de Ciencias de la Nutricion y Alimentos. Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150. Col. Lajas Maciel, C.P. 29000, Tuxtla Gutierrez, Chiapas, Mexico. https://orcid.org/0000-0001-9609-2293
  • M Hernández-González Universidad Autonoma Agraria Antonio Narro, Calzada Antonio Narro 1923. C.P. 2315, Buenavista, Saltillo Coahuila, Mexico.
  • HY López-De la Peña Universidad Autonoma Agraria Antonio Narro, Calzada Antonio Narro 1923. C.P. 2315, Buenavista, Saltillo Coahuila, Mexico. https://orcid.org/0000-0002-5382-9598
  • A Ortega-Ortega Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Extension Cuauhtemoc, Barrio de la presa s/n, Ciudad Cuauhtemoc, Chihuahua, Mexico, C.P. 31510. https://orcid.org/0000-0002-9480-9008
  • R Salgado-Delgado Tecnologico Nacional de Mexico/Instituto Tecnologico de Zacatepec, Posgrado-Departamento de Ingenieria Quimica y Bioquimica, Calzada Tecnologico 27, Zacatepec, Morelos, Mexico, C.P. 62780.
  • V Espinosa-Solis Universidad Autonoma de San Luis Potosi. Coordinacion Academica Region Huasteca Sur de la UASLP, km 5, carretera Tamazunchale-San Martin, C.P. 79960, Tamazunchale, San Luís Potosi, Mexico.

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1818

Palabras clave:

Fuentes convencionales y no convencionales de almidón, Hidrólisis ácida, Almidón resistente, Hidrólisis in vitro de almidón

Resumen

Esta investigación evaluó las propiedades fisicoquímicas (análisis proximal, color, contenido aparente de amilosa y peso molecular de amilosa) de almidones nativos de maíz comercial (NCS) y fuentes no convencionales de manzana (NAS) y malanga (NMS). Se obtuvieron almidones resistentes (RS) de sus fuentes nativas mediante el tratamiento físico de autoclave y el tratamiento químico de hidrólisis ácida conocido como lintnerización. El almidón de malanga autoclaveado (AMS) presentó el mayor contenido de RS (14 %) en comparación con todos los almidones estudiados. La hidrólisis enzimática in vitro de almidones nativos y modificados indicó que el tratamiento en autoclave disminuyó la amilolisis (» 24 - 41 %) en comparación con los almidones nativos; mientras que con el tratamiento de lintnerización, esta reducción fue menor (» 3 - 21 %). Los tratamientos en autoclave y lintnerizados redujeron el contenido de amilosa aparente en » 5 %, produciendo amilosa con menores pesos moleculares (≈ 80 – 87 kDa) para los almidones esterilizados en autoclave, y ≈ 92 – 101 kDa para los almidones lintnerizados. La luminosidad disminuyó por el tratamiento en autoclave y no por el proceso de lintnerizado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abioye, V.F., Adeyemi, I.A., Akinwande, B.A., Kulakow, P. and Maziya-Dixon, B. 2017. Effect of steam cooking and storage time on the formation of resistant starch and functional properties of cassava starch. Cogent Food and Agriculture. 3(1): 1296401.

Aboubakar, N.Y., Scher, J. and Mbofung, C.M.F. 2008. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering. 86(2): 294-305.

Akanbi, C.T., Kadiri, O. and Gbadamosi, S.O. 2019. Kinetics of starch digestion in native and modified sweetpotato starches from an orange fleshed cultivar. International Journal of Biological Macromolecules. 134: 946-953.

AOAC. 2002. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemist, Gaithersburg, MA, EUA.

Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F. and Bello-Pérez, L.A. 2005. Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: Partial characterization. Starch/Stärke. 57(9): 405-412.

Ashwar, B.A., Gani, A., Shah, A. and Masoodi, F.A. 2017. Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International Journal of Biological Macromolecules. 105: 471-477.

Ashwar, B.A., Gani, A., Shah, A., Wani, I.A. and Masoodi, F.A. 2016a. Preparation, health benefits and applications of resistant starch—A review. Starch‐Stärke. 68(3-4): 287-301.

Ashwar, B.A., Gani, A., Wani, I.A., Shah, A., Masoodi, F.A. and Saxena, D.C. 2016b. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: In vitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56: 108-117.

Ashwar, B.A., Gani, A., Wani, I.A., Shah, A., Masoodi, F.A. and Saxena, D.C. 2016c. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: In vitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56: 108-117.

Babu, A.S., Mahalakshmi, M. and Parimalavalli, R. 2014. Comparative study on properties of banana flour, starch and autoclaved starch. Trends in Carbohydrate Research. 6(1): 38-44.

Berry, C.S. 1986. Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fiber. Journal of Cereal Science. 4(4): 301-314.

Bustillos-Rodríguez, J.C., Ordóñez-García, M., Tirado-Galllegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Acosta-Muñiz, C.H., Gallegos-Morales, G., Sepúlveda-Ahumada, D.R., Salas-Marina, M.A., Berlanga-Reyes, D.I., Aparicio-Saguilán, A. and Rios-Velasco, C. 2019. Physicochemical, thermal and rheological properties of native and oxidized starch from corn landraces and hybrids. Food Biophysics. 14: 182-192.

Bustillos-Rodríguez, J.C., Tirado-Gallegos, J.M., Ordoñez-García, M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Acosta-Muñiz, C.H. and Rios-Velasco, C. 2018. Physicochemical, thermal and rheological properties of three native corn starches. Food Science and Technology. 39(1): 149-157.

Cai, C., Wei, B., Tian, Y., Ma, R., Chen, L., Qiu, L. and Jin, Z. 2019. Structural changes of chemically modified rice starch by one-step reactive extrusion. Food Chemistry. 288: 354-360.

Chiu, C. and Solarek, D. 2009. Modification of Starches. In: BeMiller, J. and Whistler, R. (Eds.).

Dai, L., Qiu, C., Xiong, L. and Sun, Q. 2015. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry. 174: 82-88.

Deka, D. and Sit, N. 2016. Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules. 92: 416-422.

Englyst, H.N., Kingman, S.M. and Cummings, J.H. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition. 46: S33-50.

Espinosa-Solis, V., Zamudio-Flores, P.B., Espino-Díaz, M., Vela-Gutiérrez, G., Rendón-Villalobos, J.R., Hernández-González, M., Hernández-Centeno, F., López-De la Peña, H.Y., Salgado-Delgado, R., Ortega-Ortega, A. 2021. Physicochemical characterization of resistant starch type-III (RS3) obtained by autoclaving malanga (Xanthosoma sagittifolium) flour and corn starch. Molecules. 26. 4006.

Fox, E., Shotton, K. and Ulrich, C. 1995. Sigma-Stat: Manual del usuario, versión 2.1 para Windows 95 NT y 3.1. Editorial Jandel Scientific Co., EUA.

Fuentes-Zaragoza, E., Riquelme-Navarrete, M.J., Sánchez-Zapata, E. and Pérez-Álvarez, J.A. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43(4): 931-942.

Gani, A., Jan, A., Shah, A., Masoodi, F.A., Ahmad, M., Ashwar, B.A. and Wani, I.A. 2016. Physico-chemical, functional and structural properties of RS3/RS4 from kidney bean (Phaseolus vulgaris) cultivars. International Journal of Biological Macromolecules. 87: 514-521.

García-Tejeda, Y.V., Zamudio-Flores, P.B., Bello-Pérez, L.A., Romero-Bastida, C.A. and Solorza-Feria, J. 2011. Oxidación del almidón nativo de plátano para su uso potencial en la fabricación de materiales de empaque biodegradables: Caracterización física, química, térmica y morfológica. Revista Iberoamericana de Polímeros. 12(3): 125-135.

Goñi, I., García-Alonso, A. and Saura-Calixto, F. 1997. A starch hydrolysis procedure to estimate glycemic index. Nutritional Research. 17: 427-437.

Goñi, I., García-Díaz, L., Mañas, E. and Saura-Calixto, F. 1996. Analysis of resistant starch: A method for foods and food products. Food Chemistry. 56(4): 445-449.

Holm, J., Hagander, B., Björck, I., Eliasson, A.C. and Lundquist, I. 1989. The effect of various thermal processes on the glycemic response to whole grain wheat products in humans and rats. The Journal of Nutrition. 119(11): 1631-1638.

Jan, K.N., Panesar, P.S. and Singh, S. 2017. Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Journal of Food Measurement and Characterization. 11(4): 1919-1927.

Jane, J-L., Chen, M., Lee, L., McPherson, A., Wong, K.-S., Radosavljevic, M. and Kasemsuwan, T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry. 76(5): 629-637.

Kim, H.J. and White, P.J. 2012. In vitro digestion rate and estimated glycemic index of oat flours from typical and high -glucan oat lines. Journal of Agricultural and Food Chemistry. 60: 5237-5242.

Kringel, D.H., Dias, A.R.G., Zavareze, E.D.R. and Gandra, E.A. 2020. Fruit wastes as promising sources of starch: Extraction, properties, and applications. Starch-Stärke. 72(3-4): 1900200.

Kwon, C., Kim, H.R., Moon, T.W., Lee, S.H. and Lee, C.J. 2019. Structural and physicochemical characteristics of granular malic acid-treated sweet potato starch containing heat-stable resistant starch. Journal of Chemistry. 2903252: 10.

Lawal, O.S. 2004. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry. 87(2): 205-218.

Li, H., Gidley, M.J. and Dhital, S. 2019. Almidones de alto contenido de amilosa para cerrar la “brecha de la fibra”: Desarrollo, estructura y funcionalidad nutricional. Revisiones completas en Ciencia de Alimentos e Inocuidad de Alimentos. 18(2): 362-379.

Li, L., Yuan, T.Z. and Ai, Y. 2020. Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches. Food Chemistry. 126485.

Ma, Z. and Boye, J.I. 2018. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition. 58(7): 1059-1083.

Obadi, M., Li, C., Li, Q., Li, X., Qi, Y. and Xu, B. 2020. Relationship between starch fine structures and cooked wheat starch digestibility. Journal of Cereal Science. 95: 103047.

Ojinnaka, M.C., Akobundu, E.N.T. and Iwe, M.O. 2009. Cocoyam starch modification effects on functional, sensory and cookies qualities. Pakistan Journal of Nutrition. 8(5): 558-567.

Ozturk, S., Koksel, H. and Ng, P.K. 2011. Production of resistant starch from acid-modified amylotype starches with enhanced functional properties. Journal of Food Engineering. 103(2): 156-164.

Punia, S., Siroha, A.K., Sandhu, K.S. and Kaur, M. 2019. Rheological behavior of wheat starch and barley resistant starch (type IV) blends and their starch noodles making potential. International Journal of Biological Macromolecules. 130: 595-604.

Radley, JA. 1976. Starch production technology. London: Applied Science Publishers Ltd. 214 p.

Ratnaningsih, N., Harmayani, E., Marsono, Y. 2019. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles. International Journal of Biological Macromolecules. 1–40.

Raungrusmee, S. and Anal, A.K. 2019. Effects of lintnerization, autoclaving, and freeze-thaw treatments on resistant starch formation and functional properties of pathumthani 80 rice starch. Foods. 8(11): 558.

Regand, A., Chowdhury, Z., Tosh, S.M., Wolever, T.M.S. and Wood, P. 2011. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemisry. 129: 297-304.

Rivas-González, M., Méndez-Montealvo, M.G.C., Sánchez-Rivera, M.M., Núñez-Santiago, M.C. and Bello-Pérez, L.A. 2008. Morphological molecular and physicochemical characterization of oxidized and lintnerized banana starch. Agrociencia. 42(5): 487-497.

Saura-Calixto, F., Goñi, I., Bravo, L. and Mañas, E. 1993. Resistant starch in foods: Modified method for dietary fiber residues. Journal of Food Science. 58(3): 642-643.

Shah, A., Masoodi, F.A., Gani, A. and Ashwar, B.A. 2016. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food Chemistry. 212: 749-758.

Shi, M., Wang, K., Yu, S., Gilbert, R.G. and Gao, Q. 2016. Structural characterizations and in vitro digestibility of acid-treated wrinkled and smooth pea starch (Pisum sativum L.). Starch-Starke. 68(7-8): 762-770.

Simsek, S. and El, S.N. 2012. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydrate Polymers. 90(3): 1204-1209.

Stevenson, D.G., Domoto, P.A. and Jane, J.L. 2006. Structures and functional properties of apple (Malus domestica Borkh) fruit starch. Carbohydrate Polymers. 63(3): 432-441.

Tirado-Gallegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Rios-Velasco, C., Acosta-Muñiz, C.H., Gutiérrez-Meraz, F., Islas-Hernández, J.J. and Salgado-Delgado, R. 2016. Efecto del método de aislamiento y el estado de madurez en las propiedades fisicoquímicas, estructurales y reológicas de almidón de manzana. Revista Mexicana de Ingeniería Química. 15(2): 391-408.

Torruco-Uco, J.G., Chávez-Murillo, C.E., Hernández-Centeno, F., Salgado-Delgado, R., Tirado-Gallegos, J.M. and Zamudio-Flores, P.B. 2016. Use of high-performance size-exclusion chromatography for characterization of amylose isolated from diverse botanical sources. International Journal of Food Properties. 19(6): 1362-1369.

Van Hung, P., Vien, N.L. and Phi, N.T.L. 2016. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry. 191: 67-73.

Vargas, G., Martínez, P. and Velezmoro, C. 2016. Propiedades funcionales de almidón de papa (Solanum tuberosum) y su modificación química por acetilación. Scientia Agropecuaria. 7: 223-230.

Walpole, E.R., Myers, H.R. and Myers, L.S. 1999. Probabilidad y estadística para ingenieros. Prentice-Hall Hispanoamericana, S.A., México.

Wang, L. and Wang, Y.J. 2001. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch-Stärke. 53(11): 570-576.

Waterschoot, J., Gomand, S.V., Fierens, E. and Delcour, J.A. 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke. 67(1-2): 14-29.

Whale, S.K. and Singh, Z. 2007. Endogenous ethylene and color development in the skin of ‘Pink Lady’apple. Journal of the American Society for Horticultural Science. 132(1): 20-28.

Xia, H., Li, B.Z. and Gao, Q. 2017. Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydrate Polymers. 177: 334-340.

Zamudio-Flores, P.B., Tirado-Gallegos, J.M., Monter-Mirando, J.G., Aparicio-Saguilán, A., Torruco-Uco, J.G., Salgado-Delgado, R. and Bello-Pérez, L.A. 2015. In vitro digestibility and thermal, morphological and functional properties of flours and oat starches of different varieties. Revista Mexicana de Ingeniería Química, 14(1): 81-97.

Zeng, S., Wu, X., Lin, S., Zeng, H., Lu, X., Zhang, Y. and Zheng, B. 2015. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chemistry. 186: 213-222.

Publicado

2023-04-21

Cómo citar

Aguilar-Mendoza, V., Zamudio Flores, P. B., Molina-Corral, F. J., Olivas-Orozco, G. I., Vela-Gutiérrez, G., Hernández-González, M., … Espinosa-Solis, V. (2023). Propiedades fisicoquímicas y digestibilidad in vitro de almidones resistentes obtenidos por autoclaveado y lintnerización a partir de almidones nativos de maíz, manzana y malanga: Propiedades fisicoquímicas y digestibilidad de almidones resistentes. Biotecnia, 25(2), 12–22. https://doi.org/10.18633/biotecnia.v25i2.1818

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.