Physicochemical properties and in vitro digestibility of resistant starches obtained by autoclaving and lintnerization from native corn, apple and malanga starches

Physicochemical properties and digestibility of resistant starches

Authors

  • V Aguilar-Mendoza Center for Research in Food and Development, A.C. Cuauhtemoc Unit, Food Physiology and Technology from the Temperate Zone. Avenida Rio Conchos s/n, Industrial Park, PO Box 781, C.P. 31570, Cuauhtemoc City, Chihuahua, Mexico.
  • PB Zamudio Flores Center for Research in Food and Development, A.C. Cuauhtemoc Unit, Food Physiology and Technology from the Temperate Zone. Avenida Rio Conchos s/n, Industrial Park, PO Box 781, C.P. 31570, Cuauhtemoc City, Chihuahua, Mexico. https://orcid.org/0000-0002-8028-8563
  • FJ Molina-Corral Center for Research in Food and Development, A.C. Cuauhtemoc Unit, Food Physiology and Technology from the Temperate Zone. Avenida Rio Conchos s/n, Industrial Park, PO Box 781, C.P. 31570, Cuauhtemoc City, Chihuahua, Mexico.
  • GI Olivas-Orozco Center for Research in Food and Development, A.C. Cuauhtemoc Unit, Food Physiology and Technology from the Temperate Zone. Avenida Rio Conchos s/n, Industrial Park, PO Box 781, C.P. 31570, Cuauhtemoc City, Chihuahua, Mexico.
  • G Vela-Gutiérrez Laboratory for Research and Development of Functional Products. Faculty of Nutrition and Food Sciences. University of Sciences and Arts of Chiapas, Libramiento Norte Poniente 1150. Col. Lajas Maciel, C.P. 29000, Tuxtla Gutierrez, Chiapas, Mexico. https://orcid.org/0000-0001-9609-2293
  • M Hernández-González Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923. C.P. 2315, Buenavista, Saltillo Coahuila, Mexico.
  • HY López-De la Peña Autonomous Agrarian University Antonio Narro, Calzada Antonio Narro 1923. C.P. 2315, Buenavista, Saltillo Coahuila, Mexico. https://orcid.org/0000-0002-5382-9598
  • A Ortega-Ortega Faculty of Agrotechnological Sciences, Autonomous University of Chihuahua, Extension Cuauhtemoc, Barrio de la presa s/n, Ciudad Cuauhtemoc, Chihuahua, Mexico, C.P. 31510. https://orcid.org/0000-0002-9480-9008
  • R Salgado-Delgado Tecnologico Nacional de Mexico/Instituto Tecnologico de Zacatepec, Graduate-Department of Chemical Engineering and Biochemistry, Calzada Tecnologico 27, Zacatepec, Morelos, Mexico, C.P. 62780.
  • V Espinosa-Solis Autonomous University of San Luis Potosi. Academic Coordination of the South Huasteca Region of the UASLP, km 5, highway Tamazunchale-San Martin, C.P. 79960, Tamazunchale, San Luis Potosi, Mexico.

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1818

Keywords:

Conventional and unconventional sources of starch, acid hydrolysis, resistant starch, in vitro starch hydrolysis

Abstract

This research evaluated the physicochemical properties (proximal analysis, color, apparent content of amylose, and molecular weight of amylose) of native starches from commercial corn (NCS) and unconventional sources apple (NAS) and malanga (NMS). In addition, resistant starches (RS) were obtained from their native sources using the physical treatment of autoclaving and the chemical treatment of acid hydrolysis known as lintnerization. Autoclaved malanga starch (AMS) presented the highest RS content (14 %) compared to all the starches studied. In vitro enzymatic hydrolysis of native and modified starches indicated that autoclaved treatment decreased amylolysis » 24 - 41 % compared to native starches. While with the lintnerization treatment, this reduction was less » 3 - 21 %. The autoclaved and lintnerized treatments reduced the apparent amylose content by » 5 %, producing amylose with lower molecular weights (≈ 80 – 87 kDa) for the autoclaved starches and ≈ 92 – 101 kDa for the lintnerized starches. The luminosity was decreased by the autoclaved treatment and not by the lintnerized process.

Downloads

Download data is not yet available.

References

Abioye, V.F., Adeyemi, I.A., Akinwande, B.A., Kulakow, P. and Maziya-Dixon, B. 2017. Effect of steam cooking and storage time on the formation of resistant starch and functional properties of cassava starch. Cogent Food and Agriculture. 3(1): 1296401.

Aboubakar, N.Y., Scher, J. and Mbofung, C.M.F. 2008. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. Journal of Food Engineering. 86(2): 294-305.

Akanbi, C.T., Kadiri, O. and Gbadamosi, S.O. 2019. Kinetics of starch digestion in native and modified sweetpotato starches from an orange fleshed cultivar. International Journal of Biological Macromolecules. 134: 946-953.

AOAC. 2002. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemist, Gaithersburg, MA, EUA.

Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F. and Bello-Pérez, L.A. 2005. Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: Partial characterization. Starch/Stärke. 57(9): 405-412.

Ashwar, B.A., Gani, A., Shah, A. and Masoodi, F.A. 2017. Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International Journal of Biological Macromolecules. 105: 471-477.

Ashwar, B.A., Gani, A., Shah, A., Wani, I.A. and Masoodi, F.A. 2016a. Preparation, health benefits and applications of resistant starch—A review. Starch‐Stärke. 68(3-4): 287-301.

Ashwar, B.A., Gani, A., Wani, I.A., Shah, A., Masoodi, F.A. and Saxena, D.C. 2016b. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: In vitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56: 108-117.

Ashwar, B.A., Gani, A., Wani, I.A., Shah, A., Masoodi, F.A. and Saxena, D.C. 2016c. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: In vitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56: 108-117.

Babu, A.S., Mahalakshmi, M. and Parimalavalli, R. 2014. Comparative study on properties of banana flour, starch and autoclaved starch. Trends in Carbohydrate Research. 6(1): 38-44.

Berry, C.S. 1986. Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fiber. Journal of Cereal Science. 4(4): 301-314.

Bustillos-Rodríguez, J.C., Ordóñez-García, M., Tirado-Galllegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Acosta-Muñiz, C.H., Gallegos-Morales, G., Sepúlveda-Ahumada, D.R., Salas-Marina, M.A., Berlanga-Reyes, D.I., Aparicio-Saguilán, A. and Rios-Velasco, C. 2019. Physicochemical, thermal and rheological properties of native and oxidized starch from corn landraces and hybrids. Food Biophysics. 14: 182-192.

Bustillos-Rodríguez, J.C., Tirado-Gallegos, J.M., Ordoñez-García, M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Acosta-Muñiz, C.H. and Rios-Velasco, C. 2018. Physicochemical, thermal and rheological properties of three native corn starches. Food Science and Technology. 39(1): 149-157.

Cai, C., Wei, B., Tian, Y., Ma, R., Chen, L., Qiu, L. and Jin, Z. 2019. Structural changes of chemically modified rice starch by one-step reactive extrusion. Food Chemistry. 288: 354-360.

Chiu, C. and Solarek, D. 2009. Modification of Starches. In: BeMiller, J. and Whistler, R. (Eds.).

Dai, L., Qiu, C., Xiong, L. and Sun, Q. 2015. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry. 174: 82-88.

Deka, D. and Sit, N. 2016. Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules. 92: 416-422.

Englyst, H.N., Kingman, S.M. and Cummings, J.H. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition. 46: S33-50.

Espinosa-Solis, V., Zamudio-Flores, P.B., Espino-Díaz, M., Vela-Gutiérrez, G., Rendón-Villalobos, J.R., Hernández-González, M., Hernández-Centeno, F., López-De la Peña, H.Y., Salgado-Delgado, R., Ortega-Ortega, A. 2021. Physicochemical characterization of resistant starch type-III (RS3) obtained by autoclaving malanga (Xanthosoma sagittifolium) flour and corn starch. Molecules. 26. 4006.

Fox, E., Shotton, K. and Ulrich, C. 1995. Sigma-Stat: Manual del usuario, versión 2.1 para Windows 95 NT y 3.1. Editorial Jandel Scientific Co., EUA.

Fuentes-Zaragoza, E., Riquelme-Navarrete, M.J., Sánchez-Zapata, E. and Pérez-Álvarez, J.A. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43(4): 931-942.

Gani, A., Jan, A., Shah, A., Masoodi, F.A., Ahmad, M., Ashwar, B.A. and Wani, I.A. 2016. Physico-chemical, functional and structural properties of RS3/RS4 from kidney bean (Phaseolus vulgaris) cultivars. International Journal of Biological Macromolecules. 87: 514-521.

García-Tejeda, Y.V., Zamudio-Flores, P.B., Bello-Pérez, L.A., Romero-Bastida, C.A. and Solorza-Feria, J. 2011. Oxidación del almidón nativo de plátano para su uso potencial en la fabricación de materiales de empaque biodegradables: Caracterización física, química, térmica y morfológica. Revista Iberoamericana de Polímeros. 12(3): 125-135.

Goñi, I., García-Alonso, A. and Saura-Calixto, F. 1997. A starch hydrolysis procedure to estimate glycemic index. Nutritional Research. 17: 427-437.

Goñi, I., García-Díaz, L., Mañas, E. and Saura-Calixto, F. 1996. Analysis of resistant starch: A method for foods and food products. Food Chemistry. 56(4): 445-449.

Holm, J., Hagander, B., Björck, I., Eliasson, A.C. and Lundquist, I. 1989. The effect of various thermal processes on the glycemic response to whole grain wheat products in humans and rats. The Journal of Nutrition. 119(11): 1631-1638.

Jan, K.N., Panesar, P.S. and Singh, S. 2017. Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Journal of Food Measurement and Characterization. 11(4): 1919-1927.

Jane, J-L., Chen, M., Lee, L., McPherson, A., Wong, K.-S., Radosavljevic, M. and Kasemsuwan, T. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry. 76(5): 629-637.

Kim, H.J. and White, P.J. 2012. In vitro digestion rate and estimated glycemic index of oat flours from typical and high -glucan oat lines. Journal of Agricultural and Food Chemistry. 60: 5237-5242.

Kringel, D.H., Dias, A.R.G., Zavareze, E.D.R. and Gandra, E.A. 2020. Fruit wastes as promising sources of starch: Extraction, properties, and applications. Starch-Stärke. 72(3-4): 1900200.

Kwon, C., Kim, H.R., Moon, T.W., Lee, S.H. and Lee, C.J. 2019. Structural and physicochemical characteristics of granular malic acid-treated sweet potato starch containing heat-stable resistant starch. Journal of Chemistry. 2903252: 10.

Lawal, O.S. 2004. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry. 87(2): 205-218.

Li, H., Gidley, M.J. and Dhital, S. 2019. Almidones de alto contenido de amilosa para cerrar la “brecha de la fibra”: Desarrollo, estructura y funcionalidad nutricional. Revisiones completas en Ciencia de Alimentos e Inocuidad de Alimentos. 18(2): 362-379.

Li, L., Yuan, T.Z. and Ai, Y. 2020. Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches. Food Chemistry. 126485.

Ma, Z. and Boye, J.I. 2018. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Critical Reviews in Food Science and Nutrition. 58(7): 1059-1083.

Obadi, M., Li, C., Li, Q., Li, X., Qi, Y. and Xu, B. 2020. Relationship between starch fine structures and cooked wheat starch digestibility. Journal of Cereal Science. 95: 103047.

Ojinnaka, M.C., Akobundu, E.N.T. and Iwe, M.O. 2009. Cocoyam starch modification effects on functional, sensory and cookies qualities. Pakistan Journal of Nutrition. 8(5): 558-567.

Ozturk, S., Koksel, H. and Ng, P.K. 2011. Production of resistant starch from acid-modified amylotype starches with enhanced functional properties. Journal of Food Engineering. 103(2): 156-164.

Punia, S., Siroha, A.K., Sandhu, K.S. and Kaur, M. 2019. Rheological behavior of wheat starch and barley resistant starch (type IV) blends and their starch noodles making potential. International Journal of Biological Macromolecules. 130: 595-604.

Radley, JA. 1976. Starch production technology. London: Applied Science Publishers Ltd. 214 p.

Ratnaningsih, N., Harmayani, E., Marsono, Y. 2019. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles. International Journal of Biological Macromolecules. 1–40.

Raungrusmee, S. and Anal, A.K. 2019. Effects of lintnerization, autoclaving, and freeze-thaw treatments on resistant starch formation and functional properties of pathumthani 80 rice starch. Foods. 8(11): 558.

Regand, A., Chowdhury, Z., Tosh, S.M., Wolever, T.M.S. and Wood, P. 2011. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemisry. 129: 297-304.

Rivas-González, M., Méndez-Montealvo, M.G.C., Sánchez-Rivera, M.M., Núñez-Santiago, M.C. and Bello-Pérez, L.A. 2008. Morphological molecular and physicochemical characterization of oxidized and lintnerized banana starch. Agrociencia. 42(5): 487-497.

Saura-Calixto, F., Goñi, I., Bravo, L. and Mañas, E. 1993. Resistant starch in foods: Modified method for dietary fiber residues. Journal of Food Science. 58(3): 642-643.

Shah, A., Masoodi, F.A., Gani, A. and Ashwar, B.A. 2016. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food Chemistry. 212: 749-758.

Shi, M., Wang, K., Yu, S., Gilbert, R.G. and Gao, Q. 2016. Structural characterizations and in vitro digestibility of acid-treated wrinkled and smooth pea starch (Pisum sativum L.). Starch-Starke. 68(7-8): 762-770.

Simsek, S. and El, S.N. 2012. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydrate Polymers. 90(3): 1204-1209.

Stevenson, D.G., Domoto, P.A. and Jane, J.L. 2006. Structures and functional properties of apple (Malus domestica Borkh) fruit starch. Carbohydrate Polymers. 63(3): 432-441.

Tirado-Gallegos, J.M., Zamudio-Flores, P.B., Ornelas-Paz, J. de J., Rios-Velasco, C., Acosta-Muñiz, C.H., Gutiérrez-Meraz, F., Islas-Hernández, J.J. and Salgado-Delgado, R. 2016. Efecto del método de aislamiento y el estado de madurez en las propiedades fisicoquímicas, estructurales y reológicas de almidón de manzana. Revista Mexicana de Ingeniería Química. 15(2): 391-408.

Torruco-Uco, J.G., Chávez-Murillo, C.E., Hernández-Centeno, F., Salgado-Delgado, R., Tirado-Gallegos, J.M. and Zamudio-Flores, P.B. 2016. Use of high-performance size-exclusion chromatography for characterization of amylose isolated from diverse botanical sources. International Journal of Food Properties. 19(6): 1362-1369.

Van Hung, P., Vien, N.L. and Phi, N.T.L. 2016. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry. 191: 67-73.

Vargas, G., Martínez, P. and Velezmoro, C. 2016. Propiedades funcionales de almidón de papa (Solanum tuberosum) y su modificación química por acetilación. Scientia Agropecuaria. 7: 223-230.

Walpole, E.R., Myers, H.R. and Myers, L.S. 1999. Probabilidad y estadística para ingenieros. Prentice-Hall Hispanoamericana, S.A., México.

Wang, L. and Wang, Y.J. 2001. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch-Stärke. 53(11): 570-576.

Waterschoot, J., Gomand, S.V., Fierens, E. and Delcour, J.A. 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke. 67(1-2): 14-29.

Whale, S.K. and Singh, Z. 2007. Endogenous ethylene and color development in the skin of ‘Pink Lady’apple. Journal of the American Society for Horticultural Science. 132(1): 20-28.

Xia, H., Li, B.Z. and Gao, Q. 2017. Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system. Carbohydrate Polymers. 177: 334-340.

Zamudio-Flores, P.B., Tirado-Gallegos, J.M., Monter-Mirando, J.G., Aparicio-Saguilán, A., Torruco-Uco, J.G., Salgado-Delgado, R. and Bello-Pérez, L.A. 2015. In vitro digestibility and thermal, morphological and functional properties of flours and oat starches of different varieties. Revista Mexicana de Ingeniería Química, 14(1): 81-97.

Zeng, S., Wu, X., Lin, S., Zeng, H., Lu, X., Zhang, Y. and Zheng, B. 2015. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chemistry. 186: 213-222.

Published

2023-04-21

How to Cite

Aguilar-Mendoza, V., Zamudio Flores, P. B., Molina-Corral, F. J., Olivas-Orozco, G. I., Vela-Gutiérrez, G., Hernández-González, M., … Espinosa-Solis, V. (2023). Physicochemical properties and in vitro digestibility of resistant starches obtained by autoclaving and lintnerization from native corn, apple and malanga starches: Physicochemical properties and digestibility of resistant starches. Biotecnia, 25(2), 12–22. https://doi.org/10.18633/biotecnia.v25i2.1818

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.