Correlación espacial de dengue con estado socioeconómico y temperatura terrestre en el noroeste de México

Correlación espacial dengue

Autores/as

  • Gerardo Alvarez-Hernandez Universidad de Sonora
  • Daraysi Yera-Grillo Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora
  • Agustín Robles-Morúa Instituto Tecnológico de Sonora
  • Javier Navarro-Estupiñán Universidad de Sonora, Departamento de Matemáticas
  • Pablo Alejandro Reyes-Castro El Colegio de Sonora, Centro de Estudios en Salud y Sociedad
  • Angélica Aracely Encinas-Cárdenas Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora
  • Héctor Francisco Duarte-Tagles Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora
  • Maria del Carmen Candia-Plata Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora

DOI:

https://doi.org/10.18633/biotecnia.v26.2175

Palabras clave:

Dengue, análisis espaciotemporal, marginación social, área censal, México

Resumen

Objetivo. Caracterizar la distribución geográfica de dengue confirmado y evaluar su autocorrelación espacial con determinantes sociales y climáticos a nivel de áreas pequeñas, en dos ciudades del noroeste de México. Métodos. En este trabajo se utilizan herramientas de análisis espacial, como el Índice de Moran y el método de Indicadores Locales de Asociación Espacial (LISA), para examinar la correlación espacial, global y local, entre la incidencia de dengue y factores climáticos y socioeconómicos a nivel de área geoestadística básica (AGEB). Para mapear áreas de alto riesgo, se usó el método de agrupamiento espacial de Getis-Ord. Resultados. En general, no identificamos una autocorrelación espacial global, aunque agrupamientos locales de una alta incidencia de dengue, temperatura de la superficie terrestre ≤31 °C y un alto grado de marginación social, coinciden. Discusión. Encontramos que a nivel de áreas pequeñas urbanas, poblaciones con desventaja social agrupan una mayor carga de dengue comparadas con áreas de mejores condiciones socioeconómicas. En los dos sitios de estudio, se encontraron patrones espaciales similares que correlacionaron problemas de salud y características físicas del medio ambiente utilizando os análisis espaciales, lo que soporta la utilidad de su uso sistemático para entender mejor la distribución urbana del dengue.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Álvarez G, Lara F, Harlow SD, Denman CA. 2009. Mortalidad infantil y marginación urbana: análisis espacial de su relación en una ciudad de tamaño medio del noroeste mexicano. Rev Panam Salud Pública. 26(1):31-38.

Álvarez-Hernández G, Lara-Valencia F, Reyes-Castro P, Rascón-Pacheco RA. 2010. An analysis of spa-tial and socioeconomic determinants of tuberculosis in Hermosillo, Sonora. 2000-2006. Int J Tub Lung Dis 14 (6): 708-713

Benedum CM, Seidahmed OME, Eltahir EAB, Markuzon N. 2018. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl Trop Dis 12 (12):e0006935 https://doi.org/10.1371/pntd.0006935

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. 2013. The global distribution and burden of dengue. Nature 496: 504–7. https://doi.org/10.1038/nature12060

Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG et al. 2012. Refining the Global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6, 1–15 https://doi.org/10.1371/journal.pntd.0001760

Celemín JP. 2009. Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, es-tructura y aplicación. Rev Univ Geogr 18: 11–31.

Cortés-Escamilla A, Roche B, Rodríguez-López HM, Lopez-Gatell-Ramírez H, Alpuche-Aranda C. 2022. Spatiotemporal patterns of dengue and zika incidence during the 2015-2018 outbreak of Zika in Mexico. Salud Publica Mex 64: 478-87 https://doi.org/10.21149/13584

do Carmo RF, Silva Jr. JVJ, Pastor AF, Freire-deSouza CD. 2020. Spatiotemporal dynamics, risk areas, and social determinants of dengue in northeastern Brazil, 2014-2017: an ecological study. Infect Dis Poverty 9:153 https://doi.org/10.1186/s40249-020-00772-6

Diez-Roux AV, Aiello A. Multilevel analysis of infectious diseases. 2005. J Infect Dis 191: S25-S33. Doi:10.1086/425288

Dzul-Manzanilla F, Correa-Morales F, Che-Mendoza A, Palacio-Vargas J, Sánchez-Tejeda G, Gonzá-lez-Roldán JF et al. 2021. Identifying urban hotspots of dengue, chikungunya and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planet Health 5: e277-85

Escobar-Mesa J, Gómez-Dantés H. 2015. Determinantes de la transmisión de dengue en Veracruz: un abordaje ecológico para su control. Salud Publica Mex. 45, 43–53. https://dx.doi.org/10.1590/S0036-36342003000100006

Fan J, Wei W, Bai Z, Fan C, Li S, Liu Q, et al. 2015. A systematic review and meta-analysis of dengue risk with temperature change. Int J Environ Res Public Health 12: 1–15. https://doi.org/10.3390/ijerph120100001

Fuentes-Vallejo M. 2017. Space and space-time distributions of dengue in a hyper-endemic urban space: the case of Girardot, Colombia. BMC Infect Dis 17:512 https://doi.org/10.1186/s12879-017-2610-7

Gobierno de México. 2015. Índice de marginación (carencias poblacionales) por localidad, municipio y entidad. Sonora, 2015. [Internet] México. Consejo Nacional de Población y Vivienda (CONAPO). [Consultado: Octubre 1, 2023] Disponible en:https://datos.gob.mx/busca/dataset/indice-de-marginacion-carencias-poblaciones-por-localidad-municipio-y-entidad

Gobierno de México. 2020. XII Censo Nacional de Población y Vivienda. [Internet] México. Instituto Nacional de Estadística, Geografía e Informática. Sonora. [Consultado: Septiembre 1, 2023] Dispo-nible en: https://www.inegi.org.mx/app/scitel/Default?ev=10

Kikuti M, Cunha GM, Paploski IAD, Kasper AM, Silva MO, Tavares AS, et al. 2015. Spatial distribution of dengue in a Brazilian urban slum setting: role of socioeconomic gradient in disease risk. PLoS Negl Trop Dis 21 (9):e0003937 https://doi.org/10.1371/journal.pntd.0003937

Kolimenakis A, Heinz S, Wilson ML, Winkler V, Yakob L, Michaelikis A et al. 2021. The role of urbani-sation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl Trop Dis 15 (9):e0009631 https://doi.org/10.1371/journal.pntd.0009631

Kourí G. El dengue, un problema creciente de salud en las Américas. 2011. Rev Cuba Salud Publica 37: 616–18. https://doi.org/10.1590/S1020-49892006000300001

Lega J, Brown HE, Barrera R, Editor S, Ritchie S. 2017. Aedes aegypti (Diptera :Culicidae) abundance model improved with relative humidity and precipitation-driven egg hatching. J Med Entomol 54: 1375–84. https://doi.org/10.1093/jme/tjx077

Mena N, Troyo A, Bonilla-Carrión R, Rica C. 2011. Factores asociados con la incidencia de dengue en Costa Rica. Rev Panam Salud Pública 29(4): 234–42.

Montoya RH, Diego J, Zambrano B, Dayan GH, Dick OB. 2012. Review: The history of dengue out-breaks in the Americas. Am J Trop Med Hyg 87: 584–93. https://doi.org/10.4269/ajtmh.2012.11-0770

Navarro-Estupiñán J, Robles-Morúa A, Vivoni ER, Zepeda J, Montoya J, Verduzco VV. 2018. Observed trends and future projections of extreme heat events in Sonora, Mexico. Int J Climatol 38 (14): 5158–81. https://doi.org/10.1002/joc.5719

Navarro-Estupiñan J, Robles-Morua A, Díaz-Caravantes R, Vivoni ER. 2020. Heat risk mapping through spatial analysis of remotely-sensed data and socioeconomic vulnerability in Hermosillo, México. Ur-ban Climate 31, 100576. https://doi.org/10.1016/j.uclim.2019.100576

Ordoñez-Sierra G, Sarmiento-Senior D, Jaramillo-Gomez JF, Giraldo P, Porras-Ramírez A, Olano VA. 2021. Multilevel analysis of social, climatic, and entomological factors that influenced dengue oc-currence in three municipalities in Colombia. One Health 12:100234 https://doi.org/10.1016/j.onehlt.2021.100234

Ogashawara I, Li L, Madriñán MJM. 2019. Spatial‐temporal assessment of environmental factors related to dengue outbreaks in São Paulo, Brazil. Geohealth 3 (8): 202–217. https://doi.org/10.1029/2019GH000186

Peña-García VH, Triana-Chávez O, Mejía-Jaramillo AM, Díaz FJ, Gómez-Palacio A, Arboleda-Sánchez S. 2016. Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environm Res Public Health 13, 7. https://doi.org/10.3390/ijerph13070734

Peña-García VH, Triana-Chávez O, Arboleda-Sánchez S. 2017. Estimating effects of temperature on dengue transmission in Colombian cities. Ann Glob Health 83 (4): 509–18. https://doi.org/10.1016/j.aogh.2017.10.011

Peeters A, Zude M, Käthner J, Ünlü M, Kanber R, Hetzroni A et al. 2015. Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput Electron Agric 111: 140–150. https://doi.org/10.1016/j.compag.2014.12.011

Phanitchat T, Zhao B, Haque U, Pientong C, Ekalaksananan T, Aromseree S, et al. 2019. Spatial and temporal patterns of dengue incidence in northeastern Thailand 2006–2016. BMC Infect Dis 3:1–12. https://doi.org/10.1186/s12879-019-4379-3

Reyes-Castro PA, Harris RB, Brown HE, Christopherson GL, Ernst KC. 2017a. Spatio-temporal and neighborhood characteristics of two dengue outbreaks in two arid cities of Mexico. Acta Trop 167: 174-82. http://dx.doi.org/10.1016/jactatropica.2017.01.001

Reyes-Castro PA, Luque-Castro AL, Díaz-Caravantes R, Walker KR, Hayden MH, Ernst KC. 2017b. Outdoor spatial spraying against dengue: a false sense of security among inhabitants of Hermosillo, Mexico. PLoS Negl Trop Dis 11 (5): e0005611 https://doi.org/10.1371/journal.pntd.0005611

Sorek-Hamer M, Just AC, Kloog I. 2016. Satellite remote sensing in epidemiological studies. Curr Opin Pediatr 28 (2): 228-34 doi:10.1097/MOP.0000000000000326

Teurlai M, Menkes CE, Cavarero V, Degallier N, Descloux E, Grageon JP et al. 2015. Socio-economic and climate factors associated with dengue fever spatial heterogeneity: a worked example in New Caledonia. PLoS Neg Trop Dis 9 (12):e0004211 doi:10.1371/journal.pntd.0004211

Tsou J, Zhuang J, Li Y, Zhang Y. 2017. Urban heat island assessment using the Landsat 8 data: a case study in Shenzhen and Hong Kong. Urban Sci 1 (1): 10. https://doi.org/10.3390/urbansci1010010

Watts MJ, Kotsila P, Mortyn PG, i Monteys VS, Brancati CU. 2020. Influence of socio-economic, demo-graphic and climate factors on the regional distribution of dengue in the United States and Mexico. Int J Health Geograph 19, 44 https://doi.org/10.1186/s12942-020-00241-1

Yang C, He X, Yan F, Yu L, Bu K, Yang J. 2017. Mapping the influence of Land use / Land cover changes on the urban heat island effect — a case study of Changchun, China. Sustainability 9 (2): 312. https://doi.org/10.3390/su9020312

Zellweger RM, Cano J, Mangeas M, Taglioni F, Mercier A, Despinoy M et al. 2017. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nau-méa, New Caledonia. Plos Negl Trop Dis 11 (4):e0005471 https://doi.org/10.1371/pntd.0005471

Publicado

2023-12-11

Cómo citar

Alvarez-Hernandez, G., Yera-Grillo, D., Robles-Morúa, A., Navarro-Estupiñán, J., Reyes-Castro, P. A., Encinas-Cárdenas, A. A., … Candia-Plata, M. del C. (2023). Correlación espacial de dengue con estado socioeconómico y temperatura terrestre en el noroeste de México: Correlación espacial dengue. Biotecnia, 26, e2175. https://doi.org/10.18633/biotecnia.v26.2175

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a