Determinantes sociales y ambientales de la fiebre manchada por Rickettsia rickettsii a nivel censal en las ciudades de Hermosillo y Obregón en Sonora, México
DOI:
https://doi.org/10.18633/biotecnia.v27.2262Palabras clave:
Fiebre manchada por Rickettsia rickettsii; análisis espacial; MéxicoResumen
La fiebre manchada por Rickettsia rickettsii (FMRR) es una enfermedad zoonótica transmitida a los humanos por la mordedura de garrapatas duras infectadas de la familia Ixodidae. La incidencia de FMRR en Sonora, México es una de las más altas a nivel nacional, con tasas de letalidad superiores al 30%. Para comprender mejor su distribución espacial en áreas urbanas endémicas de México, exploramos cómo los determinantes físicos y sociales se relacionan con sus patrones geográficos. Describimos la distribución de la incidencia de FMRR a nivel de área censal en dos ciudades de Sonora, México, y examinamos la correlación entre la incidencia acumulada y un índice de marginación social (IMS), así como con la temperatura de la superficie terrestre. En general, se observó una distribución espacial heterogénea de FMRR con puntos calientes dispersos aleatoriamente en ambas ciudades. Además, hubo puntos calientes caracterizados por una alta incidencia de FMRR, un IMS alto y una temperatura de la superficie terrestre superior a 31.6° C. Nuestros hallazgos muestran que el análisis espacial de determinantes físicos y sociales puede utilizarse para identificar zonas críticas de FMRR en áreas urbanas de pequeño tamaño a las que se pueden dirigir medidas específicas de prevención y control.
Descargas
Citas
Álvarez-Hernández, G., Gutiérrez-Roldán J.F., Milan-Hernández N.S.., Lash R.R., Barton-Behravesh C., Paddock C.D. 2017. Rocky Mountain spotted fever in Mexico: past, present, and future. Lancet Infect Dis 17:e189-e196. https://doi.org/10.1016/S1473-3099(17)30173-1
Álvarez-Hernández G., Drexler N., Paddock C.D., Licona-Enriquez J.D., De la Mora-Delgado J., Straily A., et al. 2020. Community-based prevention of epidemic Rocky Mountain spotted fever among minority populations in Sonora, Mexico, using a One Health approach. Trans R Soc Trop Med Hyg. 114:293-300. DOI:10.1093/trstmh/trz114
Álvarez-López D.I., Ochoa-Mora E., Heitman K.N., Binder A.M., Alvarez G., Armstrong P.A. 2021. Epidemiology and clinical features of Rocky Mountain spotted fever from enhanced surveillance, Sonora, Mexico: 2015-2018. Am J Trop Med Hyg 104 (1): 190-97. DOI:10.4269/ajtmh.20-0854
Atkinson S.F., Sarkar S., Aviña A., Schuermann J.A., Schuermann J.A., Williamson P. 2012. Modelling spatial concordance between Rocky Mountain spotted fever disease incidence and habitat probability of its vector Dermacentor variabilis (American dog tick). Geospat Health 7 (1):91-100. DOI:10481/gh.2012.108
Besag J., York J., Mollié A. 1991. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1-1–20.
Biggs H.M., Barton-Behravesh C., Bradley K.K., Dahlgreen F.S., Drexler N.A., Dumler J.S., et al. 2016. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichiosis and anaplasmosis – United States. A practical guide for health care and public health professionals. MMWR Recomm Rep 65 (2): 1-48. DOI: 10.15585/mmwr.rr6502a1.
Celemín J.P. 2009. Spatial autocorrelation and local indicators of spatial association: importance, structure and application. Rev Univ Geogr 18:11-31. [In Spanish] https://www.redalyc.org/articulo.oa?id=383239099001
Dantas-Torres F. 2010. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors 3:26. https://doi.org/10.1186/1756-3305-3-26
De Oliveira S.V., Willeman M.C.A., Gazeta G.S., Angerami R.N., Gurgel-Goncalves R. 2017. Predictive factors for fatal tick-borne spotted fever in Brazil. Zoonoses Public Health 64 (7): e44-e50. DOI:10.1111/zph.12345
Demma L.J., Traeger M.S., Nicholson W.L., Paddock C.D., Blau D.M., Eremeeva M.E., et al. 2005. Rocky Mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353:587-594. https://doi.org/10.1056/NEJMoa050043
Drexler N.A., Yaglom H., Casal M., Fierro M., Kriner M., Murphy B., et al. 2017. Fatal Rocky Mountain spotted fever along the United States-Mexico border, 2013-2016. Emerg Infect Dis 23(10): 1621-1626. DOI: 10.3201/eid2310.170309
Eremeeva M.E., Zambrano M.L., Anaya L., Beati L., Karpathy S.E., Santos-Silva M.M., et al. 2011. Rickettsia rickettsii in Rhipicephalus ticks, Mexicali, Mexico. J Med Entomol 48 (2): 418-21. https://dx.oi.org/10.1603/ME10181
ESRI. How point density works. ArcGIS Desktop (10.3), 2011 [Internet] United States. Environmental Systems Research Institute. Available from: https://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?topicname=how_point_density_works. Access: Feb 20, 2024
Estrada-Mendizabal R.J., Tamez-Rivera O., Vela E.H., Blanco-Murillo P., Alanis-Garza C., Flores-Gouyonnet J., et al. Rickettsial disease outbreak, Mexico, 2022. Emerg Infect Dis 2023;29(9):1944-7. DOI:10.3201/eid2909.230344
Estrada-Peña A., Venzal J.M. 2007. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 44:1130-1138. https://doi.org/10.1603/0022-2585(2007)44
Gobierno de México. Índices de marginación 2020. [Internet], México. Consejo Nacional de Población y Vivienda. Available in: https://www.gob.mx/cms/uploads/attachment/file/848423/Indices_Coleccion_280623_entymun-p_ginas-1-153.pdf. Access: Feb 20, 2024.
Gray J.S., Dautel H., Estrada-Peña A., Kahl O., Lindgren E. 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009: 593232. https://doi.org/10.1155/2009/593232
Gobierno de México. Panorama sociodemográfico de Sonora. Censo de Población y Vivienda 2020. [Internet]. México. Instituto Nacional de Estadística y Geografía. Available from: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197995.pdf. Access: Feb 20, 2024.
Kato C.Y., Chung I.H., Robinson L.K., Austin A.L., Dasch G.A., Massung R.F. 2013. Assessment of real-time PCR assay for detection of Rickettsia spp. and Rickettsia rickettsii in banked clinical samples. J Clin Microbiol 51:314-7. https://doi.org/10.1128/JCM.01723-12
Labruna M.B., Whitworth T., Horta M.C., Bouyer D.H., McBride J.W., Pinter A., et al. 2004. Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol 42:90-8. https://doi.org/10.1128/JCM.42.1.90-98.2004
López-Castillo D.C., Vaquera-Aparicio D., González-Soto M.A., Martínez-Ramírez R., Rodríguez-Muñoz L., Solórzano-Santos F. 2018. Rocky Mountain spotted fever: experience from 5 years of active surveillance in a pediatric hospital in northeast Mexico. Bol Med Hosp Infant Mex 75: 303-8. DOI:10.24875/BMHIM.M18000034. [Article in Spanish]
López-Pérez A.M., Orozco L., Zazueta O.E., Fierro M., Gomez P., Foley J. 2020. An exploratory analysis of demography and movement patterns of dogs: New insights in the ecology of endemic Rocky Mountain spotted fever in Mexicali, Mexico. PLoS One. 15(5):e0233567. DOI: 10.1371/journal.pone.0233567
Maynez-Prieto C., Rodríguez-Alarcón C., Garza-Hernández A., Laredo-Tiscareño S., Espino-Solís G., Adame-Gallegos J. 2021. Rickettsiosis and other tick-borne diseases across the border: regional focus in Chihuahua. Southwestern Entomologist 46 (1): 167-178. DOI:10.3958/046.0116.
McQuiston J.H., Wiedeman C., Singleton J., Carpenter L.R., McElroy K., Mosites E., et al. 2014. Inadequacy of IgM antibody tests for diagnosis of Rocky Mountain spotted fever. Am J Trop Med Hyg 91: 767-70. DOI: 10.4269/ajtmh.14-0123
Navarro-Estupiñan J., Robles-Morua A., Díaz-Caravantes R., Vivoni E. 2020. Heat risk mapping through spatial analysis of remotely sensed data and socioeconomic vulnerability in Hermosillo, México. Urban Clim, 31, 100576. https://doi.org/10.1016/j.uclim.2019.100576
Navarro-Estupiñan J., Robles-Morua A., Vivoni E.R., Zepeda J., Montoya J., Verduzco V.V. 2018. Observed trends and future projections of extreme heat events in Sonora, Mexico. Int J Climatol 38:5168-5181. https://doi.org/10.1002/joc.5719
Nutall PA. 2022. Climate changes impacts on ticks and tick-borne infections. Biologia 77: 1503-12 https://doi.org/10.1007/s11756-021-00927-2
Ogden N.H., Beard C.B., Ginsberg H.S., Tsao JI. 2021. Possible effects of climate change on ixodid ticks and the pathogens they transmit: predictions and observations. J Med Entomol 58 (4): 1536-41. DOI:10.1093/jme/tjaa220
Ord J.K., Getis A. 1995. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr Anal 27 (4):286-306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
Parola P., Socolovschi C., Jeanjean L., Bitam I., Fournier P.E., Sotto A., et al. 2008. Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis 2 (11):e338. https://doi.org/10.1371/journal.pntd.0000338
Peeters A., Zude M., Käthner J., Ünlü M., Kanber R., Hetzroni A., et al. 2015. Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput Electron Agric 111:140-150. https://doi.org/10.1016/J.COMPAG.2014.12.011
Raghavan R.K., Goodin D.G., Neises D., Anderson G.A., Ganta R.R. 2016. Hierarchical Bayesian spatio-temporal analysis of climatic and socio-economic determinants of Rocky Mountain spotted fever. PLoS One 11:e0150180. https://doi.org/10.1371/journal.pone.0150180
Reyes-Castro P.A., Ernst K.C., Walker K.R., Hayden M.H., Alvarez-Hernandez G. 2021. Knowledge, attitudes, and practices related to Rocky Mountain spotted fever in Hermosillo, México. Am J Trop Med Hyg 104:184-189. https://doi.org/10.4269/ajtmh.20-0181
Ribeiro C.M., da Costa V.M., de Carvalho J.L.B., Mendes R.G., Bastos P.A.S, Katagiri S., et al. 2020. Brazilian spotted fever: a spatial analysis of human cases and vectors in the state of Sao Paulo, Brazil. Zoonoses Public Health 67 (6): 629-636. https://doi.org/10.1111/zph.12742
Siabato W., Guzmán-Manrique J.. 2019. La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuad Geogr Rev Colomb Geogr 28(1):1-22. (In Spanish). https://doi.org/10.1544/rcdg.v28n1.76919
Sorek-Hamer M., Just AC, Kloog I. 2016. Satellite remote sensing in epidemiological studies. Curr Opin Pediatr 28:228–234. https://doi.org/10.1097/MOP.0000000000000326
Süss J., Klaus C., Gerstengarbe F.W., Werner P.C. 2008. What makes ticks tick? Climate change, ticks, and tick-borne diseases. J Travel Med 15 (1):39-45. https://doi.org/10.1111/j.1708-8305.2007.00176.x
Tomassone L., Portillo A., Nováková M., de Sousa R., Oteo J.A. 2018. Neglected aspects of tick-borne rickettsioses. Parasit Vectors 11:263. https://doi.org/10.1186/s13071-018-2856-y
Treadwell T.A., Holman R.C., Clarke M.J., Krebs J.W., Paddock C.D., Childs J.E. 2000. Rocky Mountain spotted fever in the United States, 1993-1996. Am J Trop Med Hyg 63:21-26. DOI:10.4269/ajtmh.2000.63.21
Tsou J., Zhuang J., Li Y., Zhang Y. 2017. Urban heat island assessment using the Landsat 8 Data: A case study in Shenzhen and Hong Kong. Urban Sci 1 (1):10. https://doi.org/10.3390/urbansci1010010
Yang C., He X., Yan F., Lingxue Y., Bu K., Yang J, et al. 2017. Mapping the influence of Land Use/Land Cover changes on the urban heat island effect—A case study of Changchun, China. Sustainability 9 (2): 312. https://doi.org/10.3390/su9020312
Zazueta O., Armstrong P., Márquez-Elguea A., Hernández-Milan N., Peterson A., Ovalle-Marroquín D., et al. 2021. Rocky Mountain spotted fever in a large Metropolitan Center, Mexico-United States Border, 2009-2019. Emerg Infect Dis 27 (6): 1567-1576. DOI: 10.3201/eid2706.191662.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)