Actividad antioxidante de harinas de amaranto obtenidas por extrusión y análisis parcial de su calidad proteica in vivo//Antioxidant activity of amaranth flours obtained by extrusion and partial analysis of their protein quality in vivo

Authors

  • Sócrates Joel Almirudis Echeverria Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Apdo. Postal 1658, Col. Centro, CP 83000, Hermosillo, Sonora
  • Benjamín Ramírez Wong Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Apdo. Postal 1658, Col. Centro, CP 83000, Hermosillo, Sonora https://orcid.org/0000-0003-4381-5931
  • Concepción Lorenia Medina Rodríguez Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Apdo. Postal 1658, Col. Centro, CP 83000, Hermosillo, Sonora
  • Elisa Magaña Barajas Universidad Estatal de Sonora, Av. Ley Federal del Trabajo No. 150, CP 83100, Hermosillo, Sonora https://orcid.org/0000-0002-9432-2953
  • Patricia Isabel Torres Chávez Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Apdo. Postal 1658, Col. Centro, CP 83000, Hermosillo, Sonora https://orcid.org/0000-0001-6982-5770
  • Ana Irene Ledesma Osuna Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales s/n, Apdo. Postal 1658, Col. Centro, CP 83000, Hermosillo, Sonora

DOI:

https://doi.org/10.18633/biotecnia.v22i1.1121

Keywords:

Amaranto, extrusión, actividad antioxidante, calidad proteica

Abstract

Se evaluó la actividad antioxidante y caracterizó parcialmente la calidad proteica in vivo de harinas de amaranto obtenidas por extrusión a tres niveles de humedad de alimentación (HA) y dos niveles de temperatura (T). Se realizó análisis químico proximal, fenoles totales (FT), y actividad antioxidante (AA). Los tratamientos con mayores y menores niveles de HA y T fueron evaluados en su calidad proteica usando un modelo murino, se incluyeron como referencia harinas de amaranto inflado comercial y sin procesar. Se evaluó la razón neta de proteína (RNP), digestibilidad aparente (DAN) y verdadera de nitrógeno (DVN). Los FT y AA disminuyeron hasta en un 30 y 56 %, respectivamente debido al proceso de extrusión. El análisis de calidad proteica in vivo mostró que los extrudidos de amaranto presentaron mayor DVN (85 y 86.72 % para los menores y mayores niveles de HA y T, respectivamente) con respecto al amaranto inflado (84.55 %) y el amaranto sin procesar (83.01 %). Las pruebas de RNP fueron significativamente diferentes entre harinas extrudidas (4.11-4.32), inflado comercial (3.76) y sin procesar (3.81). En conclusión, el procesamiento por extrusión mejora la RNP y digestibilidad de proteína, sin embargo, los fenoles totales y actividad antioxidante se ven disminuidos.

ABSTRACT

The antioxidant activity was evaluated and partially characterized of the in vivo protein quality of amaranth flours obtained by extrusion at three levels of feed moisture (HA) and two temperature levels (T). We performed proximal chemical analysis, total phenols (FT), and antioxidant activity (AA). Treatments with higher and lower levels of HA and T were evaluated in their protein quality using a murine model, commercial and unprocessed amaranth inflated flours were included as reference. The net protein ratio (RNP), apparent digestibility (DAN)and true nitrogen (DVN) were evaluated. The FT and AA decreased by 30 and 56%, respectively, due to the extrusion process. In vivo protein quality analysis showed that amaranth extrudates have higher DVN (85 and 86.72 % for the lower and higher levels of HA and T, respectively) with respect to inflated amaranth (84.55 %) and unprocessed amaranth (83.01 %). The RNP tests were significantly different between extruded flours (4.11-4.32), commercially inflated (3.76) and unprocessed (3.81). In conclusion, processing by extrusion improves RNP and protein digestibility, however, total phenols and antioxidant activity are diminished.

Downloads

Download data is not yet available.

References

AACC. 2000. American Association of Cereal Chemists. 10th edition. Approved methods of the American Association of Cereal Chemists. St. Paul, Minn.

Alam, M. S., Kaur, J., Khaira, H. y Gupta, K. 2016. Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Critical Reviews in Food Science and Nutrition. 56(3):445-473.

AOAC. 2006. Official Methods of Analysis. 18th edition. Association of Official Analytical Chemists. Washington, D.C.

Bejosano, F. P. y Corke, H. 1998. Protein quality evaluation of Amaranthus wholemeal flours and protein concentrates. Journal of the Science of Food and Agriculture. 76(1):100- 106.

Brennan, C., Brennan, M., Derbyshire, E. y Tiwari, B. K. 2011. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science y Technology. 22(10):570-575.

Bressani, R., Kalinowski, L. S., Ortiz, M. A. y Elías, L. G. 1987. Nutritional evaluation of roasted, flaked and popped A. caudatus. Archivos Latinoamericanos de Nutrición. 37(3): 525-531.

Bressani, R., Sánchez‐Marroquín, A. y Morales, E. 1992. Chemical composition of grain amaranth cultivars and effects of processing on their nutritional quality. Food Reviews International. 8(1):23-49.

Capriles, V. D., Coelho, K. D., Guerra‐Matias, A. C. y Arêas, J. A. G. 2008. Effects of processing methods on amaranth starch digestibility and predicted glycemic index. Journal of Food Science. 73(7):H160-H164.

Caselato‐Sousa, V. M. y Amaya‐Farfán, J. 2012. State of knowledge on amaranth grain: a comprehensive review. Journal of Food Science. 77(4):R93-R104.

Chávez‐Jáuregui, R. N., Silva, M. E. M. P. y Arěas, J. A. G. 2000. Extrusion cooking process for amaranth (Amaranthus caudatus L.). Journal of Food Science. 65(6):1009-1015.

Dyner, L., Cagnasso, C., Ferreyra, V., Pita Martín de Portela, M. L., Apro, N. y Olivera Carrión, M. 2016. Contenido de calcio, fibra dietaria y fitatos en diversas harinas de cereales, pseudocereales y otros. Acta Bioquímica Clínica Latinoamericana. 50(3):435-443.

Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I. y Chun, O. K. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis. 24(7):1043-1048.

Friedman, M. 1996. Nutritional value of proteins from different food sources. A review. Journal of Agricultural and Food Chemistry. 44(1):6-29.

Gamel, T. H., Linssen, J. P., Alink, G. M., Mosallem, A. S. y Shekib, L. A. 2004. Nutritional study of raw and popped seed proteins of Amaranthus caudatus L and Amaranthus cruentus L. Journal of the Science of Food and Agriculture. 84(10):1153- 1158.

Gorinstein, S., Vargas, O. J. M., Jaramillo, N. O., Salas, I. A., Ayala, A. L. M., Arancibia-Avila, P., Toledo, F., Katrich, E. y Trakhtenberg, S. 2007. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. European Food Research and Technology. 225(3-4):321-328.

Guillen-Portal, F. R., Baltensperger, D. D. y Nelson, L. A. 1999. Plant population influence on yield and agronomic traits in Plainsman grain amaranth. Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, 190-193.

Kraujalis, P., Venskutonis, P. R., Kraujalienė, V., y Pukalskas, A. 2013. Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods for Human Nutrition. 68(3):322-328.

Kumar, V., Sinha, A. K., Makkar, H. P., y Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry. 120(4):945-959

Martirosyan, D. M., Miroshnichenko, L. A., Kulakova, S. N., Pogojeva, A. V. y Zoloedov, V. I. 2007. Amaranth oil application for coronary heart disease and hypertension. Lipids in Health and Disease. 6(1):1.

Mau, J. L., Chao, G. R. y Wu, K. T. 2001. Antioxidant properties of methanolic extracts from several ear mushrooms. Journal of Agricultural and Food Chemistry. 49(11):5461-5467.

Menegassi, B., Pilosof, A. M. y Areas, J. A. 2011. Comparison of properties of native and extruded amaranth (Amaranthus cruentus L.–BRS Alegria) flour. LWT-Food Science and Technology. 44(9):1915-1921.

Mensa-Wilmot, Y., Phillips, R. D. y Hargrove, J. L. 2001. Protein quality evaluation of cowpea-based extrusion cooked cereal/legume weaning mixtures. Nutrition Research. 21(6):849-857.

Molyneux P. 2004. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Journal of Science and Technology. 26: 211-219.

Moscicki, L. y van Zuilichem, D. J. 2011. Extrusion-cooking and related technique. Extrusion-cooking techniques: applications, theory and sustainability. Wiley, Weinheim, 1-24.

Muthukumarappan, K. y Karunanithy, C. 2012. Extrusion Process Design. Handbook of Food Process Design. 710-742.

Onyango, A. N., Sila, D. N. y Njoki, J. W. 2017. Impact of processing techniques on nutritional composition and anti-nutrient content of grain amaranth. JKUAT Annual Scientific Conference, Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.

Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M. y Zachwieja, Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry. 115(3):994- 998.

Pedersen, B., Hallgren, L., Hansen, I. y Eggum, B. 1987a. The nutritive value of amaranth grain (Amaranthus caudatus). Qualitas Plantarum Plant Foods for Human Nutrition. 36(4):325-334.

Pedersen, B., Kalinowski, L. S. y Eggum, B. O. 1987b. The nutritive value of amaranth grain (Amaranthus caudatus). Plant Foods for Human Nutrition. 36(4):309-324.

Pedersen, B., Knudsen, K. B. y Eggum, B. O. 1990. The nutritive value of amaranth grain (Amaranthus caudatus). Plant Foods for Human Nutrition. 40(1):61-71.

Písaříková, B., Kráčmar, S. y Herzig, I. 2005. Amino acid contents and biological value of protein in various amaranth species. Czech Journal of Animal Science. 50(4):169-174.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. y Rice- Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26(9-10):1231-1237.

Repo-Carrasco-Valencia, R., Peña, J., Kallio, H. y Salminen, S. 2009. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science. 49(2):219-224.

Sadasivam, S. 1996. Biochemical methods. New Age International. 2nd ed. New Delhi, India.

Tovar, L. R., Brito, E., Takahashi, T., Miyazawa, T., Soriano, J. y Fujimoto, K. 1989. Dry heat popping of amaranth seed might damage some of its essential amino acids. Plant Foods for Human Nutrition, 39(4):299-309.

Wang, T., He, F. y Chen, G. 2014. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods. 7:101-111.

Wong, K. H. y Cheung, P. C. 2003. Effect of fiber-rich brown seaweeds on protein bioavailability of casein in growing rats. International Journal of Food Sciences and Nutrition. 54(4):269-279.

Yu L. 2011. Extrusion processing of protein rich food formulations. Ph. D. dissertation. Department of Food Science and Agricultural Chemistry McGill University, Montreal.

Published

2019-10-18

How to Cite

Almirudis Echeverria, S. J., Ramírez Wong, B., Medina Rodríguez, C. L., Magaña Barajas, E., Torres Chávez, P. I., & Ledesma Osuna, A. I. (2019). Actividad antioxidante de harinas de amaranto obtenidas por extrusión y análisis parcial de su calidad proteica in vivo//Antioxidant activity of amaranth flours obtained by extrusion and partial analysis of their protein quality in vivo. Biotecnia, 22(1), 24–31. https://doi.org/10.18633/biotecnia.v22i1.1121

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)