Dietary inclusion of clinoptilolite as a feed additive in the ruminants production
Zeolite in ruminants production
Keywords:
Ruminants, Zeolites, Productive performance, Ruminal fermentationAbstract
In recent years, research has focused on the study, development and validation of compounds of natural origin that can be used effectively and safely as an alternative to conventional growth promoters routinely used in livestock production, so that these do not compromise animal welfare, or the meat quality characteristics. One of these alternatives is the use of minerals such as zeolites of the clinoptilolite type. Clinoptilolite, when added to ruminant feed, has been shown to have beneficial effects on some parameters of ruminal fermentation, which translates into an improvement in the productive behavior of the animal. However, there is a lack of studies on ruminants, and in some cases have been inconclusive. Thus, the aim of this review is to discuss the effects of the dietary inclusion of clinoptilolite as a feed additive in ovines, and bovines supplemented with different levels of Clinoptilolite.
Downloads
References
Abdelrahman, M.M., Alhidary, I., Adeniji, Y.A., Alobre, M.M., Albaadani, H., Aljumaah, R., 2021. Manipulating Phosphorus, Calcium, and Magnesium Utilization by Growing Lambs Using Natural Zeolite (Clinoptilolite). Sustainability 13:1539.
Ahmaruzzaman, M., 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances in colloid and interface science 143:48-67.
Alexandre, G., Limea, L., Fanchonne, A., Coppry, O., Mandonnet, N., Boval, M., 2009. Effect of forage feeding on goat meat production: carcass characteristics and composition of Creole kids reared either at pasture or indoors in the humid tropics. Asian-Australasian journal of animal sciences 22:1140-50
Ambrozova, P., Kynicky, J., Urubek, T., Nguyen, V.D., 2017. Synthesis and modification of clinoptilolite. Molecules 22:1107.
Ames Jr, L., 1960. The cation sieve properties of clinoptilolite. American Mineralogist: Journal of Earth and Planetary Materials 45:689-700.
Baldi, A., Gottardo, D., 2017. Livestock Production to Feed the Planet: Animal Protein: A Forecast of Global Demand over the Next Years. Rel.: Beyond Anthropocentrism 5:65.
Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., Wang, M., 2020. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 14:s2-s16.
Benchaar, C., Calsamiglia, S., Chaves, A.V., Fraser, G., Colombatto, D., McAllister, T.A., Beauchemin, K.A., 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145:209-28.
Bish, D.L., Ming, D.W., 2001. Natural zeolites: Occurrence, properties, applications, vol. 45. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
Boadi, D., Benchaar, C., Chiquette, J., Massé, D., 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science 84:319-35.
Bosi, P., Creston, D., Casini, L., 2002. Production performance of dairy cows after the dietary addition of clinoptilolite. Italian Journal of Animal Science 1:187-95.
Castanon, J., 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry science 86:2466-71.
Cerri, G., Langella, A., Pansini, M., Cappelletti, P., 2002. Methods of determining cation exchange capacities for clinoptilolite-rich rocks of the Logudoro region in northern Sardinia, Italy. Clays and Clay Minerals 50:127-35.
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., et al., 1998. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine 62:533-71.
Copcia, V.E., Luchian, C., Dunca, S., Bilba, N., Hristodor, C.M., 2011. Antibacterial activity of silver-modified natural clinoptilolite. Journal of materials science 46:7121-28.
Coronel-Burgos, F., Plascencia, A., Castro-Pérez, B., Contreras-Pérez, G., Barreras, A., Estrada-Angulo, A., 2017. Influencia de la sustitución parcial del maíz y de la pasta de soja por zeolita en ovinos en etapa de finalización: Características de la canal, composición tisular y masa visceral. Archivos de zootecnia 66:223-28.
Cursaru, B., Radu, A.-L., Perrin, F.-X., Sarbu, A., Teodorescu, M., Gavrilă, A.-M., Damian, C.-M., Sandu, T., Iordache, T.-V., et al., 2020. Poly (ethylene glycol) Composite Hydrogels with Natural Zeolite as Filler for Controlled Delivery Applications. Macromolecular Research 28:211-20.
Dávila-Guzman, N.E., Cerino-Córdova, F.J., Diaz-Flores, P.E., Rangel-Mendez, J.R., Sánchez-González, M.N., Soto-Regalado, E., 2012. Equilibrium and kinetic studies of ferulic acid adsorption by Amberlite XAD-16. Chemical Engineering Journal 183:112-16.
Deligiannis, K., Lainas, T., Arsenos, G., Papadopoulos, E., Fortomaris, P., Kufidis, D., Stamataris, C., Zygoyiannis, D., 2005. The effect of feeding clinoptilolite on food intake and performance of growing lambs infected or not with gastrointestinal nematodes. Livestock Production Science 96:195-203.
Delkash, M., Bakhshayesh, B.E., Kazemian, H., 2015. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials 214:224-41.
Dennis, S., Nagaraja, T., Bartley, E., 1981. Effect of lasalocid or monensin on lactate-producing or using rumen bacteria. Journal of Animal Science 52:418-26.
Di Gregorio, M.C., Neeff, D.V.d., Jager, A.V., Corassin, C.H., Carão, Á.C.d.P., Albuquerque, R.d., Azevedo, A.C.d., Oliveira, C.A.F., 2014. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Reviews 33:125-35.
Dibner, J.J., Richards, J.D., 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poultry science 84:634-43.
Dschaak, C., Eun, J.-S., Young, A., Stott, R., Peterson, S., 2010. Effects of supplementation of natural zeolite on intake, digestion, ruminal fermentation, and lactational performance of dairy cows. The Professional Animal Scientist 26:647-54.
Đuričić, D., Sukalić, T., Marković, F., Kočila, P., Žura Žaja, I., Menčik, S., Dobranić, T., Benić, M., Samardžija, M., 2020. Effects of dietary vibroactivated clinoptilolite supplementation on the intramammary microbiological findings in dairy cows. Animals 10:202.
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), 2013. Scientific Opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. EFSA Journal 11:30–39.
Eisenwagen, S., Pavelic, K., 2020. Potential Role of Zeolites in Rehabilitation of Cancer Patients. Archives of Physiotherapy and Rehabilitation 3:29-40.
El-Nile, A., Elazab, M., El-Zaiat, H., El-Azrak, K.E.-D., Elkomy, A., Sallam, S., Soltan, Y., 2021. In vitro and in vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: Effects on ruminal fermentation and nutrients digestibility. Animals 11:2215.
Erwanto, E., Zakaria, W.A., Prayuwidayati, M., 2011. The use of ammoniated zeolite to improve rumen metabolism in ruminant. Animal Production 13.
Estrada-Angulo, A., Burgos, F.C., Pérez, B.C., Soto, M.L., Barreras, A., Montoya, C.A., Pérez, G.C., Plascencia, A., 2017. Efecto de la inclusión de zeolita (clinoptilolita) en ovinos en etapa de finalización: Respuesta productiva y energética de la dieta. Archivos de zootecnia 66:381-86.
Estrada-Angulo, A., Urías-Estrada, J.D., Castro-Pérez, B.I., Contreras-Pérez, G., Angulo-Montoya, C., Barreras, A., López-Soto, M.A., Olivas-Valdez, J.A., Plascencia, A., 2017. Impact of dietary inclusion of clinoptilolite as substitute of soybean meal on growth performance, dietary energetics and carcass traits of feedlot ewes fed a corn-based diet. Austral journal of veterinary sciences 49:123-28.
Fanta, F.T., Dubale, A.A., Bebizuh, D.F., Atlabachew, M., 2019. Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC chemistry 13:1-12.
Forouzani, R., Rowghani, E., Zamiri, M.J., 2004. The effect of zeolite on digestibility and feedlot performance of Mehraban male lambs given a diet containing urea-treated maize silage. Animal Science 78:179-84.
Galindo, J., Elias, A., Cordero, J., 1982. The addition of zeolite to silage diets. 1. Effect of the zeolite level on the rumen cellulolisis of cows fed silage. Cuban Journal of Agricultural Science 16:277-84.
Galindo, J., Elias, A., Gonzalez, M., 1986. The effect of zeolite on ruminal bacteria population and its activity in heifers fed sunflower: sorghum silage, Studies in Surface Science and Catalysis. Elsevier, pp. 1055-59.
Gaskins, H., Collier, C., Anderson, D., 2002. Antibiotics as growth promotants: mode of action. Animal biotechnology 13:29-42.
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
Ghaemnia, L., Bojarpour, M., Mirzadeh, K.H., Chaji, M., Eslami, M., 2010. Effects of Different Levels of Zeolite on Digestibility. Journal of Animal and Veterinary Advances 9:779-81.
Ghoneem, W.M., El-Tanany, R.R., Mahmoud, A.E., 2022. Effect of Natural Zeolite as a Rumen Buffer on Growth Performance and Nitrogen Utilization of Barki Lambs. Pakistan J. Zool 54:1199-207.
Goodarzi, M., Nanekarani, S., 2012. The effects of calcic and potassic clinoptilolite on ruminal parameters in Lori breed sheep. APCBEE Procedia 4:140-45.
Hagiwara, Z., Hoshino, S., Ishino, H., Nohara, S., Tagawa, K., Yamanaka, K., 2011. United States Patent No 4 911 898. Retrieved on January.
Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Holm, P.E., Hansen, H.C.B., 2010. Sorption hysteresis of Cd (II) and Pb (II) on natural zeolite and bentonite. Journal of hazardous materials 181:686-91.
Hcini, E., Ben Slima, A., Kallel, I., Zormati, S., Traore, A.I., Gdoura, R., 2018. Does supplemental zeolite (clinoptilolite) affect growth performance, meat texture, oxidative stress and production of polyunsaturated fatty acid of Turkey poults? Lipids in health and disease 17:1-9.
Jha, B., Singh, D.N., 2016. Fly ash zeolites. Advanced Structured Materials 78:5-31.
Kammerer, D.R., Kammerer, J., Carle, R., 2019. Adsorption and Ion Exchange for the Recovery and Fractionation of Polyphenols: Principles and Applications, Polyphenols in Plants. Elsevier, pp. 327-39.
Karatzia, M.A., Pourliotis, K., Katsoulos, P.D., Karatzias, H., 2011. Effects of in-feed inclusion of clinoptilolite on blood serum concentrations of aluminium and inorganic phosphorus and on ruminal pH and volatile fatty acid concentrations in dairy cows. Biological trace element research 142:159-66.
Kardaya, D., Sudrajat, D., Dihansih, E., 2012. Efficacy of dietary urea-impregnated zeolite in improving rumen fermentation characteristics of local lamb. Media Peternakan 35:207-07.
Katsoulos, P.D., Karatzia, M.A., Boscos, C., Wolf, P., Karatzias, H., 2016. In-field evaluation of clinoptilolite feeding efficacy on the reduction of milk aflatoxin M1 concentration in dairy cattle. Journal of animal science and technology 58:1-7.
Katsoulos, P.-D., Roubies, N., Panousis, N., Karatzias, H., 2005. Effects of long-term feeding dairy cows on a diet supplemented with clinoptilolite on certain serum trace elements. Biological trace element research 108:137-45.
Khachlouf, K., Hamed, H., Gdoura, R., Gargouri, A., 2018. Effects of zeolite supplementation on dairy cow production and ruminal parameters–a review. Annals of Animal Science 18:857-77
Khachlouf, K., Hamed, H., Gdoura, R., Gargouri, A., 2019. Effects of dietary Zeolite supplementation on milk yield and composition and blood minerals status in lactating dairy cows. Journal of Applied Animal Research.
Kraljević Pavelić, S., Simović Medica, J., Gumbarević, D., Filošević, A., Pržulj, N., Pavelić, K., 2018. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in pharmacology:1350.
Król, M., 2020. Natural vs. synthetic zeolites. Crystals 10:622.
Kyriakis, S.C., Papaioannou, D.S., Alexopoulos, C., Polizopoulou, Z., Tzika, E.D., Kyriakis, C.S., 2002. Experimental studies on safety and efficacy of the dietary use of a clinoptilolite-rich tuff in sows: a review of recent research in Greece. Microporous and Mesoporous Materials 51:65-74.
Laza-knoerr, A.L., Dumargue, P., 2020. Urea supplement for animal nutrition. Google Patents.
Li, Y., Li, L., Yu, J., 2017. Applications of zeolites in sustainable chemistry. Chem 3:928-49.
Mahdavirad, N., Chaji, M., Bojarpour, M., Dehghanbanadaky, M., 2021. Comparison of the effect of sodium bicarbonate, sodium sesquicarbonate, and zeolite as rumen buffers on apparent digestibility, growth performance, and rumen fermentation parameters of Arabi lambs. Tropical Animal Health and Production 53:1-12.
Mallek Z, Fendri I, Khannous L, Ben Hassena A, Traore AI, Ayadi M-A, et al. Effect of zeolite (clinoptilolite) as feed additive in Tunisian broilers on the total flora, meat texture and the production of omega 3 polyunsaturated fatty acid. Lipids in health and disease. 2012;11(1):1-7.
Marin, M.P., Pogurschi, E.N., Marin, I., Nicolae, C.G., 2020. Influence of natural zeolites supplemented with inorganic selenium on the productive performance of dairy cows. Pakistan journal of zoology 52:775.
Martins, G.N., Spínola, V., Castilho, P.C., 2020. Release of adsorbed ferulic acid in simulated gastrointestinal conditions. European Food Research and Technology 246:1297-306.
Mathew, A.G., Cissell, R., Liamthong, S., 2007. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne pathogens and disease 4:115-33
McCollum, F.T., Galyean, M.L., 1983. Effects of clinoptilolite on rumen fermentation, digestion and feedlot performance in beef steers fed high concentrate diets. Journal of Animal Science 56:517-24.
Meschiatti, M.A., Gouvêa, V.N., Pellarin, L.A., Batalha, C.D., Biehl, M.V., Acedo, T.S., Dórea, J.R., Tamassia, L.F., Owens, F.N., et al., 2019. Feeding the combination of essential oils and exogenous α-amylase increases performance and carcass production of finishing beef cattle. Journal of Animal Science 97:456-71.
Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, M., Rajic, N., 2017. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environmental Science and Pollution Research 24:20273-81.
Montes-Luna, A.d.J., Fuentes-López, N., Perera-Mercado, Y., Pérez-Camacho, O., Castruita-de León, G., García-Rodríguez, S., García-Zamora, M., 2015. Caracterización de clinoptilolita natural y modificada con Ca2+ por distintos métodos físico-químicos para su posible aplicación en procesos de separación de gases. Superficies y vacío 28:5-11.
Mumpton, F., 1998. The role of natural zeolites in agriculture and aquaculture, Zeo-Agriculture. Westview Press, Boulder, Colorado.
Norouzian, M., Valizadeh, R., Khadem, A., Afzalzadeh, A., Nabipour, A., 2010. The effects of feeding clinoptilolite on hematology, performance, and health of newborn lambs. Biological trace element research 137:168-76.
Papaioannou, D.S., Kyriakis, S.C., Papasteriadis, A., Roumbies, N., Yannakopoulos, A., Alexopoulos, C., 2002. Effect of in-feed inclusion of a natural zeolite (clinoptilolite) on certain vitamin, macro and trace element concentrations in the blood, liver and kidney tissues of sows. Research in veterinary science 72:61-68.
Patra, A.K., Saxena, J., 2009. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie van Leeuwenhoek 96:363-75.
Peña-Torres, E.F., González-Ríos, H., Avendaño-Reyes, L., Valenzuela-Grijalva, N.V., Pinelli-Saavedra, A., Muhlia-Almazán, A., Peña-Ramos, E.A., 2019. Ácidos hidroxicinámicos en producción animal: farmacocinética, farmacodinamia y sus efectos como promotor de crecimiento. Revisión. Revista mexicana de ciencias pecuarias 10:391-415.
Pond, W., Laurent, S., Orloff, H., 1984. Effect of dietary clinoptilolite or zeolite Na A on body weight gain and feed ulilization of growing lambs fed urea or intact protein as a nitrogen supplement. Zeolites 4:127-32.
Pond, W.G., Mumpton, F.A., 1984. Zeo-agriculture: Use of natural zeolites in agriculture and aquaculture. Westview press.
Roque-Jiménez, J.A., Pinos-Rodríguez, J.M., Rojo-Rub, R., Mendoza, G.D., Vazquez, A., De Jesus, J.A.C., Lee-Rangel, H.A., 2018. Effect of natural zeolite on live weight changes, ruminal fermentation and nitrogen metabolism of ewe lambs. South African Journal of Animal Science 48.
Rostami, R., Jonidi Jafari, A., 2014. Application of an adsorptive-thermocatalytic process for BTX removal from polluted air flow. Journal of Environmental Health Science and Engineering 12:1-10.
Ruíz, O., Castillo, Y., Miranda, M.T., Elías, A., Arzola, C., Rodríguez, C., La, O., 2007. Niveles de zeolita y sus efectos en indicadores de la fermentación ruminal en ovinos alimentados con heno de alfalfa y concentrado. Revista Cubana de Ciencia Agrícola 41:253-57.
Sadeghi, A., Shawrang, P., 2006. The effect of natural zeolite on nutrient digestibility, carcass traits and performance of Holstein steers given a diet containing urea. Animal Science 82:163-67.
Sallam, S.M., Abo‐Zeid, H.M., Abaza, M.A., El‐Zaiat, H.M., 2022. Nutrient intake, digestibility, growth performance, and carcass of sheep fed urea‐based diet supplemented with natural clinoptilolite. Animal Science Journal 93:e13689.
Servatan, M., Zarrintaj, P., Mahmodi, G., Kim, S.-J., Ganjali, M.R., Saeb, M.R., Mozafari, M., 2020. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today 25:642-56.
Sherwood, D.M., Erickson, G.E., Klopfenstein, T.J., 2005. Effect of clinoptilolite zeolite on cattle performance and nitrogen volatilization loss. Nebraska Beef Cattle Reports:177.
Song, Z., Huang, Y., Xu, W.L., Wang, L., Bao, Y., Li, S., Yu, M., 2015. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size. Scientific reports 5:1-7.
Spears, J.W., 1996. Organic trace minerals in ruminant nutrition. Animal feed science and technology 58:151-63.
Stojković, J., Ilić, Z.Z., Ćirić, S., Ristanović, B., Petrović, M.P., Caro Petrović, V., Kurcubic, V.S., 2012. Efficiency of zeolite basis preparation in fattening lambs diet. Biotechnology in Animal Husbandry 28:545-52.
Tánori-Lozano, A., Quintana-Romandía, A.I., Montalvo-Corral, M., Pinelli-Saavedra, A., Valenzuela-Melendres, M., Dávila-Ramírez, J.L., Islava-Lagarda, T.Y., González-Ríos, H., 2022. Influence of ferulic acid and clinoptilolite supplementation on growth performance, carcass, meat quality, and fatty acid profile of finished lambs. Journal of Animal Science and Technology 64:274-90.
Thiel, A., Tippkötter, N., Suck, K., Sohling, U., Ruf, F., Ulber, R., 2013. New zeolite adsorbents for downstream processing of polyphenols from renewable resources. Engineering in Life Sciences 13:239-46.
Tondar, M., Parsa, M.J., Yousefpour, Y., Sharifi, A.M., Shetab-Boushehri, S.V., 2014. Feasibility of clinoptilolite application as a microporous carrier for pH-controlled oral delivery of aspirin. Acta Chimica Slovenica 61:688-93.
Toprak, N., Yılmaz, A., Öztürk, E., Yigit, O., Cedden, F., 2016. Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites. South African Journal of Animal Science 46:313-20.
Urías-Estrada, J.D., López-Soto, M.A., Barreras, A., Aguilar-Hernández, J.A., González-Vizcarra, V.M., Estrada-Angulo, A., Zinn, R.A., Mendoza, G.D., Plascencia, A., 2017. Influence of zeolite (clinoptilolite) supplementation on characteristics of digestion and ruminal fermentation of steers fed a steam-flaked corn-based finishing diet. Animal Production Science 58:1239-45.
Valpotić, H., Gračner, D., Turk, R., Đuričić, D., Vince, S., Folnožić, I., Lojkić, M., Žura Žaja, I., Bedrica, L., et al., 2017. Zeolite clinoptilolite nanoporous feed additive for animals of veterinary importance: potentials and limitations. Periodicum biologorum 119:159-72.
Valpotic, H., Terzic, S., Vince, S., Samardzija, M., Turk, R., Lackovic, G., Habrun, B., Djuricic, D., Sadikovic, M., et al., 2016. In-feed supplementation of clinoptilolite favourably modulates intestinal and systemic immunity and some production parameters in weaned pigs. Veterinární medicína 61:317-27.
Weitkamp, J., Puppe, L., 1999. Catalysis and zeolites: fundamentals and applications. Springer Science & Business Media.
White, J.L., Ohlrogge, A.J., 1983. Ion exchange materials to increase consumption of non-protein nitrogen by ruminants. Google Patents.
Wu, Q.J., Wang, L.C., Zhou, Y.M., Zhang, J.F., Wang, T., 2013. Effects of clinoptilolite and modified clinoptilolite on the growth performance, intestinal microflora, and gut parameters of broilers. Poultry Science 92:684-92.
Yuna, Z., 2016. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science 33:443-54.
Zayed, M.S., Szumacher-Strabel, M., El-Fattah, D.A.A., Madkour, M.A., Gogulski, M., Strompfová, V., Cieślak, A., El-Bordeny, N.E., 2020. Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage. The Journal of Agricultural Science 158:326-38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.