ACTIVIDAD CITOCROMO C OXIDASA Y ATPasa DE Rhyzopertha dominica BAJO EL EFECTO DE LAS ATMÓSFERAS MODIFICADAS

Autores/as

  • Victor Andrés Levy-de la Torre Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.
  • Lucía Gómez-García Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.
  • Jesús Borboa-Flores Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.
  • Francisco Javier Wong-Corral Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.
  • Francisco Javier Cinco-Moroyoqui Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.
  • Oliviert Martínez-Cruz Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Encinas y Rosales s/n. Hermosillo, Sonora, 83000. México.

DOI:

https://doi.org/10.18633/biotecnia.v20i2.603

Palabras clave:

hipoxia, insectos, citocromo c oxidasa, ATPsintasa, atmósferas modificadas

Resumen

Rhyzopertha dominica es un insecto que se alimenta de una gran variedad de cereales y granos almacenados, causando grandes pérdidas económicas. Estudios de la bioenergética de los insectos son necesarios para diseñar estrategias que reemplacen el uso de insecticidas. Un método alternativo es el uso de atmósferas modificadas para comprometer el transporte de electrones y la fosforilación oxidativa. El objetivo de esta investigación fue evaluar la actividad citocromo c oxidasa (COX) y ATPasa de R. dominica bajo el efecto de las atmósferas modificadas. Primeramente, se realizó un bioensayo donde se sometieron a los insectos a hipoxia (5% O2) por 12 y 24 h y los resultados fueron comparados con los insectos en normoxia (19% O2). Se determinó la concentración de lactato, donde se detectó un incremento significativo 75% en los organismos expuestos a la hipoxia. Las mitocondrias de ambos tratamientos fueron aisladas y se evaluó la actividad COX y ATPasa. Se detectó un decremento en la actividad de ambas enzimas a las 24 h de hipoxia con respecto a normoxia. Los resultados sugieren que bajo condiciones hipóxicas la COX reduce su actividad debido a la limitación por el sustrato, mientras que la actividad ATPasa mitocondrial es inhibida para mantener el potencial intermembranal y por consiguiente la homeostasis celular.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, S.S., Hsiao, M., Zhao, H.W., Dugan, L.L., Haddad, G.G. y Zhou, D. 2012. Hypoxia-adaptation involves mitochondrial metabolic depression and decreased ROS leakage. PLOS ONE. 7: e36801.

Belda, C. y Riudavets, J. 2012. Reproduction of the parasitoids Anisopteromalus calandrae (Howard) and Lariophagus distinguendus (Förster) on arenas containing a mixed population of the coleopteran pests Sitophilus oryzae and Rhyzopertha dominica. Journal of Pest Science. 85: 381-385.

Bailey, J.R. y Driedzic, W.R. 1996. Decreased total ventricular and mitochondrial protein synthesis during extended anoxia in turtle heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 271: R1660-R1667.

Blomberg, M.R. y Siegbahn, P.E. 2014. Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels. Biochimica et Biophysica Acta. 7:1165-1177.

Bosetti, F, Brizzi, F, Barogi, S, Mancuso, M, Siciliano, G, Tendi, E.A, y Solaini, G. 2002. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiology of aging. 23:371-376.

Boutilier R.G. 2001. Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology. 18: 3171-3181.

Bulathsinghala, A.T. y Shaw, I.C. 2014. The toxic chemistry of methyl bromide. Human & Experimental Toxicology. 33:81-91.

Burkett, B.N. y Schneiderman, H.A. 1974. Roles of oxygen and carbon dioxide in the control of spiracular function in Cecropia pupae. The Biological Bulletin, 147: 274-293.

Carvalho, M.O., Pires, I., Barbosa, A., Barros, G., Riudavets, J., Garcia, A.C. y Navarro, S. 2012. The use of modified atmospheres to control Sitophilus zeamais and Sitophilus oryzae on stored rice in Portugal. Journal of stored products research. 50: 49-56.

Csik, L. 1940. The susceptibility to oxygen want of different Drosophila species. Zeitschrift für vergleichende Physiologie, 27: 304-310.

Chadwick, L. E. y Gilmour, D. 1940. Respiration during flight in Drosophila repleta Wollaston: the oxygen consumption considered in relation to the wing-rate. Physiological Zoology 13: 398-410.

Chandel, N.S., Budinger, G.S., Choe, S.H. y Schumacker, P.T. 1997. Cellular respiration during hypoxia role of cytochrome oxidase as the oxygen sensor in hepatocytes. Journal of Biological Chemistry. 272: 18808-18816.

Cheng, W., Lei, J., Ahn, J. E., Wang, Y., Lei, C. y Zhu-Salzman, K. 2013. CO2 enhances effects of hypoxia on mortality, development, and gene expression in cowpea bruchid, Callosobruchus maculatus. Journal of insect physiology. 59:1160-1168.

Chiappini, E., Molinari, P. y Cravedi, P. 2009. Mortality of Tribolium confusum J. du Val (Coleoptera: Tenebrionidae) in controlled atmospheres at different oxygen percentages. Journal of stored products research. 45: 10-13.

Cui, S., Wang, L., Qiu, J., Liu, Z. y Geng, X. 2017. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. Pest Management Science. 73: 1267-1276.

Di Lisa, F., Blank, P.S., Colonna, R., Gambassi, G. I. O. V. A. N. N. I., Silverman, H.S., Stern, M.D. y Hansford, R.G. 1995. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. The Journal of physiology. 486: 1-13.

Feala, J.D., Coquin, L., McCulloch, A.D. y Paternostro, G. 2007. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Molecular Systems Biology. 3: 99.

Galli, G.L. y Richards, J.G. 2014. Mitochondria from anoxiatolerant animals reveal common strategies to survive without oxygen. Journal of Comparative Physiology B, 184:285-302.

Goodman, J.C., Valadka, A.B., Gopinath, S.P., Uzura, M. y Robertson, C.S. 1999. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Critical care medicine. 27: 1965-1973.

Harvey-Samuel, T., Morrison, N.I., Walker, A.S., Marubbi, T., Yao, J., Collins, H.L. y Shelton, A.M. 2015. Pest control and resistance management through release of insects carrying a maleselecting transgene. BMC boil. 13: 49.

Heddi, A., Lefebvre, F. y Nardon, P. 1993. Effect of endocytobiotic bacteria on mitochondrial enzymatic activities in the weevil Sitophilus oryzae (Coleoptera: Curculionidae). Insect biochemistry and molecular biology. 23: 403-411.

Hoback, W.W., Podrabsky, J.E., Higley, L.G., Stanley, D.W.y Hand, S.C. 2000. Anoxia tolerance of con-familial tiger beetle larvae is associated with differences in energy flow and anaerobiosis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 170:307-314.

Kwast, K.E. y Hand, S.C. 1993. Regulatory features of protein synthesis in isolated mitochondria from Artemia embryos. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 265: R1238-R1246.

Kwast, K.E. y Hand, S.C. 1996. Acute depression of mitochondrial protein synthesis during anoxia. Contributions of oxygen sensing, matrix acidification, and redox state. Journal of Biological Chemistry. 271: 7313-7319.

Kwast, K.E. 1996. Oxygen and pH regulation of protein synthesis in mitochondria from Artemia franciscana embryos. Biochemical Journal. 313: 207-213.

Ma, E., Xu, T. y Haddada, G.G. 1999. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Molecular Brain Research. 63: 217-224.

Martinez-Cruz, O., de la Barca, A.C., Uribe-Carvajal, S. y Muhlia-Almazan, A. 2012. The function of mitochondrial F O F 1 ATPsynthase from the whiteleg shrimp Litopenaeus vannamei muscle during hypoxia. Comparative Biochemistry and

Physiology - Part B: Biochemistry & Molecular Biology. 162:107-112.

McMullen, D.C. y Storey, K.B. 2008. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect biochemistry and molecular biology. 38: 367-373.

Mitcham, E., Martin, T. y Zhou, S. 2006. The mode of action of insecticidal controlled atmospheres. Bulletin of entomological research. 96:213-222.

Papa, S., Martino, P.L., Capitanio, G., Gaballo, A., De Rasmo, D., Signorile, A. y Petruzzella, V. 2012. The oxidative phosphorylation system in mammalian mitochondria. In Advances in Mitochondrial Medicine (pp. 3-37). Springer Netherlands.

Scholz, T.D. y Balaban, R.S. 1994. Mitochondrial F1-ATPase activity of canine myocardium: effects of hypoxia and stimulation. American Journal of Physiology-Heart and Circulatory Physiology.

: H2396-H2403.

Storey, K.B. y Storey, J.M. 1988. Freeze tolerance in animals. Physiological Reviews. 68: 27-84.

Storey, K.B. y Storey, J.M. 1990. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. The Quarterly Review of Biology. 65: 145-174.

Wilps, H. y Zebe, E. 1976. The end-products of anaerobic carbohydrate metabolism in the larvae of Chironomus thummi thummi. Proceedings of the Royal Society of London. Series B, Biological sciences. 112: 263-272.

Wittig, I., Karas, M. y Schägger, H. 2007. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Molecular & Cellular Proteomics. 6: 1215-1225.

Yang, J., Zhu, J. y Xu, W.H. 2010. Differential expression, phosphorylation of COX subunit 1 and COX activity during diapause phase in the cotton bollworm, Helicoverpa armigera. Journal of insect physiology. 56: 1992-1998.

Zhang, Z.Y., Chen, B., Zhao, D.J. y Kang, L. 2013. Functional modulation of mitochondrial cytochrome c oxidase underlies adaptation to high-altitude hypoxia in a Tibetan migratory locust. Proceedings of the Royal Society of London B: Biological Sciences. 280: 20122758.

Descargas

Publicado

2018-05-03

Cómo citar

Levy-de la Torre, V. A., Gómez-García, L., Borboa-Flores, J., Wong-Corral, F. J., Cinco-Moroyoqui, F. J., & Martínez-Cruz, O. (2018). ACTIVIDAD CITOCROMO C OXIDASA Y ATPasa DE Rhyzopertha dominica BAJO EL EFECTO DE LAS ATMÓSFERAS MODIFICADAS. Biotecnia, 20(2), 79–84. https://doi.org/10.18633/biotecnia.v20i2.603

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.