Inactivación de Staphylococcus aureus y mantenimiento del valor nutricional de la leche humana por altas presiones hidrostáticas y secado por aspersión

Inactivación de Staphylococcus aureus y mantenimiento del valor nutricional de la leche humana

Autores/as

  • BR Aguilar-Uscanga Centro Universitario de Ciencias Exactas e Ingenierías. Universidad de Guadalajara. https://orcid.org/0000-0002-8100-2598
  • M Calderón-Santoyo Tecnológico Nacional de México/Instituto Tecnológico de Tepic https://orcid.org/0000-0002-8744-1815
  • M Iñiguez-Moreno Tecnológico Nacional de México/Instituto Tecnológico de Tepic
  • JR Solís-Pacheco Centro Universitario de Ciencias Exactas e Ingenierías. Universidad de Guadalajara.
  • A Fonseca-Cantabrana University Center of Exact Sciences and Engineering. University of Guadalajara/ National Technological Institute of Mexico / Technological Institute of Tepic
  • JA Ragazzo-Sanchez Tecnologico Nacional de México/Instituto Tecnologico de Tepic https://orcid.org/0000-0002-2298-3306

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1872

Palabras clave:

Leche humana, altas presiones hidrostáticas, secado por aspersión, Staphylococcus aureus, métodos de conservación

Resumen

Los bancos de leche humana (BLH) utilizan la pasteurización y congelación, como principales métodos de conservación para la leche humana (LH). Sin embargo, su valor nutricional disminuye durante la descongelación y almacenamiento. El objetivo del presente estudio fue evaluar el efecto de las altas presiones hidrostáticas (APH) y el secado por aspersión sobre los macronutrientes, la calidad microbiológica e inactivación de Staphylococcus aureus en LH. Para ello, se realizó la cuantificación de proteínas, lípidos, carbohidratos, cenizas, bacterias lácticas, mesófilos aerobios, coliformes, mohos, levaduras y S. aureus. Los resultados mostraron que S. aureus y los grupos microbianos evaluados fueron reducidos por debajo del límite permitido por los BLH (<10 UFC/mL). Mientras que las concentraciones de macronutrientes permanecieron sin cambio durante todo el proceso de conservación. El uso de fibra soluble durante el proceso de secado permitió obtener un rendimiento mayor al 99 %. El polvo mostró alta solubilidad y bajos niveles de humedad y actividad en agua; las cuales son propiedades deseables en los alimentos deshidratados. Por lo tanto, la combinación de HHP y el proceso de secado por aspersión demostró ser una alternativa que facilitar el manejo, mejora la calidad microbiana y permite la adición de oligosacáridos manteniendo el valor nutricional de la LH.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar-Uscanga, B. R., Pacheco, J. R. S., Ragazzo-Sánchez, J. A., Garduño, A. C., Valdéz, J. C. M., Arreola, A. R., and Niño, J. C. S. 2021. Assessment of the accelerated shelf life of human milk dehydrated by aspersion and treated by UV, high pressures, and pasteurization. Journal of Food Quality. 2021. DOI: https://doi.org/10.1155/2021/6688266

Alvarenga, V. O., Campgnollo, F. B., Pia, A. K. R., Conceição, D. A., Abud, Y., Sant’Anna, C., Hubinger, M. D., and Sant’Ana, A. S. 2018. Quantifying the responses of three Bacillus cereus strains in isothermal conditions and during spray drying of different carrier agents. Frontiers in Microbiology. 9: 1113. DOI: https://doi.org/10.3389/fmicb.2018.01113

Boquien, C. Y. 2018. Human milk: An ideal food for nutrition of preterm newborn. Frontiers in Pediatrics. 6: 295. DOI: https://doi.org/10.3389/fped.2018.00295

Bulut, S., and Karatzas, K. A. G. 2021. Inactivation of Escherichia coli K12 in phosphate buffer saline and orange juice by high hydrostatic pressure processing combined with freezing. LWT - Food Science and Technology. 136: 110313. DOI: https://doi.org/10.1016/j.lwt.2020.110313

Calvoa, J., García Lara, N.R., et al. 2018. Recomendaciones para la creación y el funcionamiento de los bancos de leche materna en España. 89(1): Asociación Española de Pediatría. 65.e1-65.e6. DOI: https://doi.org/10.1016/j.anpedi.2018.01.010

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., and Cal-Vidal, J. 2005. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies. 6: 420–428. DOI: https://doi.org/10.1016/j.ifset.2005.05.003

Cavazos-Garduño, A., Serrano-Niño, J. C., Solís-Pacheco, J. R., Gutierrez-Padilla, J. A., González-Reynoso, O., García, H. S., and Aguilar-Uscanga, B. R. 2016. Effect of pasteurization, freeze-drying and spray drying on the fat globule and lipid profile of human milk. Journal of Food and Nutrition Research. 4: 296–302.

Çavdar, G., Papich, T., and Ryan, E. P. 2019. Microbiome, breastfeeding and public health policy in the United States: The case for dietary fiber. Nutrition and Metabolic Insights. 12: 117863881986959. DOI: https://doi.org/10.1177/1178638819869597

Chang, Y. C., Chen, C. H., and Lin, M. C. 2012. The macronutrients in human milk change after storage in various containers. Pediatrics and Neonatology. 53: 205–209. DOI: https://doi.org/10.1016/j.pedneo.2012.04.009

Coroller, L., Leguerinel, I., Mettler, E., Savy, N., and Mafart, P. 2006. General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied and Environmental Microbiology. 72: 6493–6502. DOI: https://doi.org/10.1128/AEM.00876-06

Costello, K. M., Velliou, E., Gutierrez-Merino, J., Smet, C., Kadri, H. El, Impe, J. F. V., and Bussemaker, M. 2021. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. Ultrasonics Sonochemistry. 79: 105776. DOI: https://doi.org/10.1016/j.ultsonch.2021.105776

da Silva Carvalho, A. G., da Costa Machado, M. T., da Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., and Hubinger, M. D. 2016. Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technology. 294: 421–428. DOI: https://doi.org/10.1016/j.powtec.2016.03.007

Demazeau, G., Plumecocq, A., Lehours, P., Martin, P., Couëdelo, L., and Billeaud, C. 2018. A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components. Frontiers in Public Health. 6: 306. DOI: https://doi.org/10.3389/fpubh.2018.00306

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350–356. DOI: https://doi.org/10.1021/ac60111a017

Erkmen, O., and Karataş, Ş. 1997. Effect of high hydrostatic pressure on Staphylococcus aureus in milk. Journal of Food Engineering. 33: 257–262. DOI: https://doi.org/10.1016/S0260-8774(97)00021-6

Felfoul, I., Burgain, J., Perroud, C., Gaiani, C., Scher, J., Attia, H., and Petit, J. 2022. Impact of spray-drying conditions on physicochemical properties and rehydration ability of skim dromedary and cow’s milk powders. Drying Technology. 40: 665–677. DOI: https://doi.org/10.1080/07373937.2020.1828448

Firstenberg-Eden, R., Rosen, B., and Mannheim, C. H. 1977. Death and injury of Staphylococcus aureus during thermal treatment of milk. Canadian Journal of Microbiology. 23: 1034–1037. DOI: https://doi.org/10.1139/m77-153

Folch, J., Lees, M., and Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 226: 497–509. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5

Habtegebriel, H., Edward, D., Wawire, M., Sila, D., and Seifu, E. 2018. Effect of operating parameters on the surface and physico-chemical properties of spray-dried camel milk powders. Food and Bioproducts Processing. 112: 137–149. DOI: https://doi.org/10.1016/j.fbp.2018.09.010

Hartmann, B. T., Pang, W. W., Keil, A. D., Hartmann, P. E., and Simmer, K. 2007. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU. Early Human Development. 83: 667–673. DOI: https://doi.org/10.1016/j.earlhumdev.2007.07.012

Huu, C. N., Rai, R., Yang, X., Tikekar, R. V., and Nitin, N. 2021. Synergistic inactivation of bacteria based on a combination of low frequency, low-intensity ultrasound and a food grade antioxidant. Ultrasonics Sonochemistry. 74: 105567. DOI: https://doi.org/10.1016/j.ultsonch.2021.105567

Jacobs, S. E., and Thornley, M. J. 1954. The lethal action of ultrasonic waves on bacteria suspended in milk and other liquids. Journal of Applied Bacteriology. 17: 38–56. DOI: https://doi.org/10.1111/j.1365-2672.1954.tb02022.x

Kaavya, R., Pandiselvam, R., Abdullah, S., Sruthi, N. U., Jayanath, Y., Ashokkumar, C., Chandra Khanashyam, A., Kothakota, A., and Ramesh, S. V. 2021. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends in Food Science and Technology. 112: 400–418. DOI: https://doi.org/10.1016/j.tifs.2021.04.011

Kennedy, J., Blair, I. S., McDowell, D. A., and Bolton, D. J. 2005. An investigation of the thermal inactivation of Staphylococcus aureus and the potential for increased thermotolerance as a result of chilled storage. Journal of Applied Microbiology. 99: 1229–1235. DOI: https://doi.org/10.1111/j.1365-2672.2005.02697.x

Kinsella, J. E., and Morr, C. V 1984. Milk proteins: Physicochemical and functional properties. C R C Critical Reviews in Food Science and Nutrition. 21: 197–262. DOI: https://doi.org/10.1080/10408398409527401

Koenig, Á., de Albuquerque, E. M., Correia, S. F., and Costa, F. A. 2005. Immunologic factors in human milk: The effects of gestational age and pasteurization. Journal of Human Lactation. 21: 439–443. DOI: https://doi.org/10.1177/0890334405280652

Langrish, T. A. G., Marquez, N., and Kota, K. 2006. An investigation and quantitative assessment of particle shape in milk powders from a laboratory-scale spray dryer. Drying Technology. 24: 1619–1630. DOI: https://doi.org/10.1080/07373930601031133

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry. 193: 265–275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Mediano, P., Fernández, L., Jiménez, E., Arroyo, R., Espinosa-Martos, I., Rodríguez, J. M., and Marín, M. 2017. Microbial diversity in milk of women with mastitis: Potential role of Coagulase-Negative Staphylococci, Viridans Group Streptococci, and Corynebacteria. Journal of Human Lactation. 33: 309–318. DOI: https://doi.org/10.1177/0890334417692968

Norma Oficial Mexicana NOM-111-SSA1-1994, Bienes y servicios. Método para la cuenta de mohos y levaduras en alimentos. [Accessed May 15 2015] 1994. Available in: https://www.dof.gob.mx/nota_detalle.php?codigo=4881226&fecha=13/09/1995#gsc.tab=0

Norma Oficial Mexicana NOM-113-SSA1-1994, Bienes y servicios. Método para la cuenta de microorganismos coliformes totales en placa. [Accessed May 15 2015] 1994. Available in: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69536.pdf

Norma Oficial Mexicana NOM-115-SSA1-1994, Bienes y servicios. Método para la determinación de Staphylococcus aureus en alimentos 1994. [Accessed May 16 2015] 1994. Available in: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69539.pdf

Norma Oficial Mexicana NOM-131-SSA1-2012, Productos y servicios. Fórmulas para lactantes, de continuación y para necesidades especiales de nutrición. Alimentos y bebidas no alcohólicas para lactantes y niños de corta edad. Disposiciones y especificaciones 2012. [Accessed May 02 2015] 1994. Available in: https://www.dof.gob.mx/nota_detalle.php?codigo=5267447&fecha=10/09/2012#gsc.tab=0

Norma Oficial Mexicana NOM-184-SSA1-2002, Productos y servicios. Leche, fórmula láctea y producto lácteo combinado. Especificaciones sanitarias. [Accessed May 04 2015] 2002. Available in: https://dof.gob.mx/nota_to_doc.php?codnota=690308#:~:text=NOM%2D184%2DSSA1%2D2002,23%20de%20octubre%20de%202002.

Norma Oficial Mexicana NOM-243-SSA1-2010, Leche, fórmula láctea, producto lácteo combinado y derivados lácteos. Disposiciones y especificaciones sanitarias. Métodos de prueba. [Accessed April 18 2015] 2010. Available in: https://dof.gob.mx/normasOficiales/4156/salud2a/salud2a.htm

Novak, F. R., and Cordeiro, D. M. B. 2007. The correlation between aerobic mesophilic microorganism counts and Dornic acidity in expressed human breastmilk. Jornal de Pediatria. 83: 87–91. DOI: https://doi.org/10.2223/JPED.1589

Novak, F. R., Junqueira, A. R., Dias, M. D. S. P. C., and Almeida, J. A. G. 2008. Sensorial analysis of expressed human milk and its microbial load. Jornal de Pediatria. 84: 181–184. DOI: https://doi.org/10.1590/S0021-75572008000200016

Ragaee, S., Guzar, I., Abdel-Aal, E. S. M., and Seetharaman, K. 2012. Bioactive components and antioxidant capacity of Ontario hard and soft wheat varieties. Canadian Journal of Plant Science. 92: 19–30. DOI: https://doi.org/10.4141/cjps2011-100

Repine, J. E., Fox, R. B., and Berger, E. M. 1981. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. The Journal of Biological Chemistry. 256: 7094–7096. DOI: https://doi.org/10.1016/S0021-9258(19)68927-1

Saha, D., Nanda, S. K., and Yadav, D. N. 2019. Optimization of spray drying process parameters for production of groundnut milk powder. Powder Technology. 355: 417–424. DOI: https://doi.org/10.1016/j.powtec.2019.07.066

Salleh-Mack, S. Z., and Roberts, J. S. 2007. Ultrasound pasteurization: The effects of temperature, soluble solids, organic acids and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonics Sonochemistry. 14: 323–329. DOI: https://doi.org/10.1016/j.ultsonch.2006.07.004

Schumann, P. 2011. Peptidoglycan structure. In Methods in Microbiology. 38, pp. 101-129. Cambridge: Academic Press, United Kingdom. DOI: https://doi.org/10.1016/B978-0-12-387730-7.00005-X

Slutzah, M., Codipilly, C. N., Potak, D., Clark, R. M., and Schanler, R. J. 2010. Refrigerator storage of expressed human milk in the neonatal intensive care unit. Journal of Pediatrics. 156: 26–28. DOI: https://doi.org/10.1016/j.jpeds.2009.07.023

Sögüt, Ö., Bali, T., Baltas, H., and Apaydin, G. 2013. Determination of trace elements in ashes of milk samples by using XRF technique. Asian Journal of Chemistry. 25: 4385–4388. DOI: https://doi.org/10.14233/ajchem.2013.13985

Solís-Pacheco, J. R., Rodríguez-Arreola, A., Gutiérrez-Padilla, J. A., García Morales, E., Castro-Albarrán, J., Balcázar-López, E., Cavazos-Garduño, A., and Uscanga-Aguilar, B. R. 2019. Human milk powder an alternative for better conservation and healthier use in the banks of human milk. CPQ Nutrition. 3: 1–12.

Sun, X., Cameron, R. G., and Bai, J. 2020. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocolloids. 100: 105420. DOI: https://doi.org/10.1016/j.foodhyd.2019.105420

Wesolowska, A., Sinkiewicz-Darol, E., Barbarska, O., Bernatowicz-Lojko, U., Borszewska-Kornacka, M. K., and van Goudoever, J. B. 2019. Innovative techniques of processing human milk to preserve key components. Nutrients. 11: 1169. DOI: https://doi.org/10.3390/nu11051169

Zenker, M., Heinz, V., and Knorr, D. 2003. Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of food protection. 66: 1642–1649. DOI: https://doi.org/10.4315/0362-028X-66.9.1642

Zhang, H., Tikekar, R. V., Ding, Q., Gilbert, A. R., and Wimsatt, S. T. 2020. Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food-grade compounds. Comprehensive Reviews in Food Science and Food Safety. 19: 2110–2138. DOI: https://doi.org/10.1111/1541-4337.12582

Resumen gráfico

Archivos adicionales

Publicado

2023-05-22

Cómo citar

Aguilar-Uscanga, B. R. ., Calderón-Santoyo, M. ., Iñiguez-Moreno, M. ., Solís-Pacheco, J. R. ., Fonseca-Cantabrana, Ángel, & Ragazzo-Sanchez, J. A. (2023). Inactivación de Staphylococcus aureus y mantenimiento del valor nutricional de la leche humana por altas presiones hidrostáticas y secado por aspersión : Inactivación de Staphylococcus aureus y mantenimiento del valor nutricional de la leche humana. Biotecnia, 25(2), 105–112. https://doi.org/10.18633/biotecnia.v25i2.1872

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.