Efecto de las fitonanopartículas de óxido de zinc y magnesio en la producción de rebaudiósidos y compuestos fenólicos en plantas de Stevia rebaudiana Bertoni

Autores/as

  • Maria Concepcion Velazquez Gamboa Instituto Tecnológico Nacional de México/Tuxtla Gutiérrez
  • Ludwi Rodríguez Hernández Instituto Tecnológico superior de Cintalapa
  • Miguel Abud Archila Instituto Tecnológico Nacional de México/Tuxtla Gutiérrez https://orcid.org/0000-0002-4509-7964
  • Federico Antonio Gutiérrez Miceli Instituto Tecnológico Nacional de México/Tuxtla Gutiérrez https://orcid.org/0000-0002-5379-1518
  • Víctor Manuel Ruíz Valdiviezo Instituto Tecnológico Nacional de México/Tuxtla Gutiérrez
  • Benjamín Valdez Salas Universidad Autónoma de Baja California
  • Dalia Margarita Ferrer Sánchez
  • María Celina Luján Hidalgo Instituto Tecnológico Nacional de México/Tuxtla Gutiérrez

DOI:

https://doi.org/10.18633/biotecnia.v26.2313

Palabras clave:

Estimulación, Rebaudiósido M, Compuestos antioxidantes, Ácido clorogénico

Resumen

La demanda de edulcorantes naturales ha ido en aumento; Esta tendencia está influenciada por varios factores, incluidas las preocupaciones y controversias en torno a los edulcorantes sintéticos. Este estudio tiene como objetivo determinar el efecto de la provocación con fitonanopartículas de ZnO y MgO (PTNP) en plantas de Stevia rebaudiana. La síntesis de PTNP utilizó el potencial de reducción del extracto acuoso natural derivado de las hojas de Moringa oleifera. La caracterización de los PTNP se realizó mediante métodos espectroscópicos. Las imágenes de microscopio electrónico de barrido de las PTNP de ZnO mostraron la presencia de nanopartículas aglomeradas en forma de varilla, mientras que las PTNP de MgO tenían forma irregular y estaban aglomeradas. El análisis de dispersión dinámica de la luz mostró un tamaño promedio de 9 a 30 nm para los PTNP de ZnO y de 5 a 10 nm para los PTNP de MgO, mientras que los valores del potencial zeta (ζ) validaron la estabilidad de los PTNP. Los espectros infrarrojos revelaron bandas correspondientes a vibraciones de estiramiento de los enlaces de los grupos implicados en la reducción y estabilización de los PTNP. La mayor producción de rebaudiósidos A, E y M se obtuvo utilizando 1 mg/L de ZnO PTNP. La elicitación con PTNPs principalmente con ZnO a partir de la concentración de 20 mg/L induce la producción de moléculas con capacidad antioxidante, obteniendo un aumento del 137% del ácido clorogénico, mientras que el del ácido cafeico es del 185%. Estos resultados indicaron que la aplicación de PTNP de ZnO y MgO indujo un mayor contenido de compuestos antioxidantes en Stevia rebaudiana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alamdari S., Ghamsari M.S., Lee C., Han W., Park H.H., Tafreshi M.J., Afarideh H. y Ara M.H. 2020. Preparation and characterization of zinc oxide nanoparticles using leaf extract of sambucus ebulus. Applied Sciences, 10(10), 3620. https://doi.org/10.3390/app10103620

Ali R., Shanan Z.J., Saleh G.M. y Abass, Q. 2020. Green synthesis and the study of some physical proper-ties of MgO nanoparticles and their antibacterial activity. Iraqi Journal of Science, 61(2), 266-276. https://doi.org/10.24996/ijs.2020.61.2.9

Amrulloh H., Fatiqin A., Simanjuntak W., Afriyani H. y Annissa A. 2021. Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa oleifera Bark as green agents. Journal of Multidisciplinary Applied Natural Science, 1(1), 44–53. https://doi.org/10.47352/jmans.v1i1.9

Bano N., Khan S. y Hamid Y. 2023. Effect of foliar application of nanoparticles on growth, physiology, and antioxidant enzyme activities of lettuce (Lactuca sativa L.) plants under cadmium toxicity. Envi-ronmental Science and Pollution Research, 30, 99310–99325. https://doi.org/10.1007/s11356-023-29241-x

Boro, B., Nath, A.K., Barthakur, M. y Kalita, P. 2021. Synthesis and Characterization of MgO Nanopar-ticle and Its In Vitro Cytotoxic Effect on Erythrocytes. In: Ramkrishna, D., Sengupta, S., Dey Ban-dyopadhyay, S., Ghosh, A. (eds) Advances in Bioprocess Engineering and Technology. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7409-2_20

Bouttier-Figueroa D.C., Cortez-Valadez M., Flores-Acosta M. y Robles-Zepeda R.E. 2023. Synthesis of Metallic Nanoparticles Using Plant’s Natural Extracts: Synthesis Mechanisms and Applications. Bio-tecnia, XXV (3): 125-13. https://doi.org/10.18633/biotecnia.v25i3.1916

Campbell J., Burkitt S., Dong N. y Zavaleta C. 2019. Nanoparticles for biomedical applications, chapter 9: nanoparticle characterization techniques (Eun, J. C., Lorraine, L. Carlos R., ed.), Elsevier. pp. 129–144. https://doi.org/10.1016/B978-0-12-816662-8.00009-6

Cauich-Cauich R., Tun-Suárez J.M., Cristóbal-Alejo J., Hererra-Parra E., Andueza-Noh R. y Lozano-Contreras M.G. 2022. Evaluación de consorcios micorrícicos arbusculares nativos en interacción con niveles de fósforo en la promoción del crecimiento y fotosíntesis de Stevia rebaudiana Bertoni. Bio-tecnia XXV (1): 67-8. https://doi.org/10.18633/biotecnia.v25i1.1765

Chandra S., Chakraborty N., Panda K. y Acharya K. 2017. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiology and Biochemistry, 115, 298–307. https://doi.org/10.1016/j.plaphy.2017.04.008

Chaudhuri S.K. y Malodia L. 2017. Biosynthesis of zinc oxide nanoparticles using leaf extract of calotro-pis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Applied Nanoscience, 7, 501–512. https://doi.org/10.1007/s13204-017-0586-7

Fakhari S., Jamzad M. y Kabiri F.H. 2019. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12, 19–24. https://doi.org/10.1080/17518253.2018.1547925

Gasmalla M.A., Yang R., Musa A., Hua X. y Ye F. 2017. Influence of sonication process parameters to the state of liquid concentration of extracted rebaudioside A from Stevia (Stevia rebaudiana Berto-ni) leaves. Arabian Journal of Chemistry, 10(5), 726–731. https://doi.org/10.1016/j.arabjc.2014.06.012

Gowri M., Latha N. y Rajan M. 2019. Copper Oxide nanoparticles synthesized using Eupatorium odora-tum, Acanthospermum hispidum leaf extracts, and its antibacterial effects Against pathogens: A comparative study. BioNanoScience, 9, 545–552. https://doi.org/10.1007/s12668-019-00655-7

Gupta E., Purwar S., Sundaram S y Rai G.K. 2013. Nutritional and therapeutic values of Stevia rebaudi-ana: A review. Journal of Medicinal Plants Research, 7(46), 3343–3353. https://doi.org/10.5897/JMPR2013.5276

Gupta P., Sharma S. y Saxena S. 2015. Biomass yield and steviol glycoside production in callus and sus-pension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Applied Bio-chemistry and Biotechnology, 176, 863–874. https://doi.org/10.1007/s12010-015-1616-0

Gupta M, Tomar RS, Mishra RK, (2020) Factors affecting biosynthesis of green nanoparticles. Our Her-itage, 68(30), 10530-10555.

Hussain F., Hadi F. y Rongliang Q. 2021. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremedia-tion. Environmental Science and Pollution Research, 28, 34697–34713. https://doi.org/10.1007/s11356-021-13132-0

Javed R., Usman M., Yücesan B., Zia M. y Gürel E. 2017a. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Ber-toni. Plant Physiology and Biochemistry, 110, 94–99. https://doi.org/10.1016/j.plaphy.2016.05.032

Javed R., Zia M., Yücesan B. y Gürel E. 2017b. Abiotic stress of ZnO-PEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni. IET Nanobiotechnology. 11, 898–902. https://doi.org/10.1049/iet-nbt.2016.0247

Karimi M., Hashemi J., Ahmadi A., Abbasi A., Pompeiano A., Tavarini S., Guglielminetti L. y Angelini L.G. 2015. Opposing effects of external gibberellin and daminozide on stevia growth and metabo-lites. Applied Biochemistry and Biotechnology, 175, 780–791. https://doi.org/10.1007/s12010-014-1310-7

Khajuria A.K., Kumari M., Kandwal A., Singh A. y Bisht N.S. 2021. Biofabrication of zinc oxide nano-particles from two different zinc sources and their antimicrobial activity. BioNanoScience. 11, 793–809. https://doi.org/10.1007/s12668-020-00802-5

Krishnani K.K., Boddu V.M. y Chadha N.K. 2022. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. Environmental Science and Pollution Research, 29, 81130–81165. https://doi.org/10.1007/s11356-022-23301-4

Lucho S.R., Do-Amaral M.N., Milech C., Ferrer M.Á., Calderón A.A., Bianchi V.J. y Braga J.B. 2018. Elicitor-Induced transcriptional changes of genes of the steviol glycoside biosynthesis pathway in Stevia rebaudiana Bertoni. Journal of Plant Growth Regulation, 37, 971–985. https://doi.org/10.1007/s00344-018-9795-x

Magdaleno García G., Juárez Maldonado A., Betancourt Galindo R., González Morales S., Cabrera de la Fuente M., Sánchez Vega M. y Méndez A. 2023. Zinc oxide nanoparticle morphology modify ger-mination and early growth of bell pepper seedlings. Biotecnia XXV (3): 5-1. https://doi.org/10.18633/biotecnia.v25i3.1908

Masarovicová E. y Králová K. 2013. Metal nanoparticles and plants. Ecological Chemistry and Engineer-ing S, 20(1), 9–22. https://doi.org/10.2478/eces-2013-0001

Mehta M.R., Mahajan H.P. y Hivrale A.U. 2021. Green synthesis of chitosan capped-copper nano bio-composites: synthesis, characterization, and biological activity against plant pathogens. BioNano-Science, 11, 417–427. https://doi.org/10.1007/s12668-021-00823-8

Moghaddam A.B., Moniri M., Azizi S., Rahim R.A., Ariff A., bin-Saad W.Z., Namvar F., Navaderi M. y Mohamad R. 2017. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 22(6), 872. https://doi.org/10.3390/molecules22060872

Moharramnejad S., Azam A.T., Panahandeh J., Dehghanian Z. y Ashraf M. 2019. Effect of methyl jasmonate and salicylic acid on in vitro growth, stevioside production, and oxidative defense system in Stevia rebaudiana. Sugar Tech, 21, 1031–1038. https://doi.org/10.1007/s12355-019-00727-8

Moorthy S.K., Ashok C.H., Rao K.V. y Viswanathan C. 2015. Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Mater Today, 2, 4360–4368. https://doi.org/10.1016/j.matpr.2015.10.027

Nongbet A., Mishra A.K., Mohanta Y.K., Mahanta S., Ray M.K., Khan M., Baek K.H. y Chakrabartty I. 2022. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants, 11(19), 2587. https://doi.org/10.3390/plants11192587

Pandey D.K. y Dey A. 2018. HPTLC Analysis of the antioxidant and possible antidiabetic chlorogenic acid in the in situ and in vitro populations of the low-calorie sweetener Stevia rebaudiana (Bert.) Bertoni. Analytical Chemistry Letters, 8, 872–881. https://doi.org/10.1080/22297928.2018.1515657

Ramezani M., Asghari S., Gerami M., Ramezani F. y Karimi A.M. 2020. Effect of silver nanoparticle treatment on the expression of key genes involved in glycosides biosynthetic pathway in Stevia re-baudiana B. Plant Sugar Tech, 22, 518–527. https://doi.org/10.1007/s12355-019-00786-x

Raliya R., Tarafdar J.C., Choudhary K., Mal P., Raturi A., Gautam R. y Singh S.K. 2014. Synthesis of MgO nanoparticles using Aspergillus Tubingensis TFR-3. Journal of Bionanoscience, 8, 34–38. https://doi.org/10.1166/jbns.2014.1195

Rodríguez-Pérez C., Quirantes-Piné R., Fernández-Gutiérrez A. y Segura-Carretero A. 2015. Optimiza-tion of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002

Saraiva A., Carrascosa C., Raheem D., Ramos F. y Raposo A. 2020. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Interna-tional Journal of Environmental Research and Public Health, 17(17):6285. https://doi.org/10.3390/ijerph17176285

Selvakesavan R.K., Kruszka D., Shakya P., Mondal D. y Franklin G. 2023. In nanomaterial interactions with plant cellular mechanisms and macromolecules and agricultural implications, chapters 2: impact of nanomaterials on plant secondary metabolism. (Jameel, M. Lina, M. Mohan, J. ed), Springer Cham pp. 133–170. https://doi.org/10.1007/978-3-031-20878-2_6

Senthilkumar N., Nandhakumar E., Priya P., Soni D., Vimalan M. y Vetha I. 2017. Synthesis of ZnO na-noparticles using leaf extract of: Tectona grandis (L.) and their anti-bacterial, anti-arthritic, antioxi-dant and in vitro cytotoxicity activities. New Journal of Chemistry, 41, 10347–10356. https://doi.org/10.1039/c7nj02664a

Shaikhaldein H.O., Al-qurainy F., Khan S., Nadeem M., Tarroum M., Salih A.M., Gaafar A.Z., Al-shameri A., Alansi S., Alenezi N.A. y Alfarraj N.S. 2021. Biosynthesis and characterization of ZnO nanoparticles using Ochradenus arabicus and their effect on growth and antioxidant systems of Maerua oblongifolia. Plants, 10(9), 1808. https://doi.org/10.3390/plants10091808.

Suresh J., Yuvakkumar R., Sundrarajan M. y Hong S.I. 2014. Green synthesis of magnesium oxide nano-particles. Advanced Materials Research, 952, 141–144. https://doi.org/10.4028/www.scientific.net/AMR.952.141

Velázquez-Gamboa M.C., Rodríguez-Hernández L., Abud-Archila, M., Gutiérrez-Miceli, F.A., Gonzá-lez-Mendoza D., Valdez-Salas B., González-Terreros E. y Luján-Hidalgo M.C. 2021. Agronomic biofortification of stevia rebaudiana with zinc oxide (ZnO) phytonanoparticles and antioxidant compounds. Sugar Tech, 23, 453–460. https://doi.org/10.1007/s12355-020-00897-w

Vijayakumar S., Punitha V.N. y Parameswari N. 2022. Phytonanosynthesis of MgO Nanoparticles: Green Synthesis, Characterization and Antimicrobial Evaluation. Arabian Journal for Science and Engi-neering, 47, 6729–6734. https://doi.org/10.1007/s13369-021-06107-3

Wang J., Li J., Li J., Li J., Liu S., Huang L. y Gao W. 2017. Production of active compounds in medici-nal plants: from plant tissue culture to biosynthesis. Chinese Herbal Medicines, 9(2), 115–125. https://doi.org/10.1016/s1674-6384(17)60085-6

Wang Y., Sun X., Jia X., Zhu L. y Yin H. 2021. Comparative transcriptomic of Stevia rebaudiana pro-vides insight into rebaudioside D and rebaudioside M biosynthesis. Plant Physiology and Biochem-istry, 167, 541–549. https://doi.org/10.1016/j.plaphy.2021.08.028

Yoneda Y., Shimizu H., Nakashima H., Miyasaka J. y Ohdoi K. 2018. Effect of treatment with gibberel-lin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in Stevia rebaudiana Bertoni. Sugar Tech, 20, 482–491. https://doi.org/10.1007/s12355-017-0561-3

Resumen gráfico

Archivos adicionales

Publicado

2024-09-11

Cómo citar

Velazquez Gamboa, M. C., Rodríguez Hernández, L., Abud Archila, M., Gutiérrez Miceli, F. A., Ruíz Valdiviezo, V. M., Valdez Salas, B., … Luján Hidalgo, M. C. (2024). Efecto de las fitonanopartículas de óxido de zinc y magnesio en la producción de rebaudiósidos y compuestos fenólicos en plantas de Stevia rebaudiana Bertoni. Biotecnia, 26, e2313. https://doi.org/10.18633/biotecnia.v26.2313

Número

Sección

Artículos originales

Métrica

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.