Preparation and physical – mechanical characterization of biocomposites based on rice flour and cane bagasse fiber

Authors

  • Yumari Díaz Herrera Universidad Autónoma Chapingo
  • Carlos Alberto Villaseñor Perea Universidad Autónoma Chapingo
  • Artemio Pérez López Universidad Autónoma Chapingo
  • Arturo Mancera Rico Universidad Autónoma Agraria Antonio Narro
  • María del Rosario Venegas Ordoñez Universidad Autónoma Chapingo
  • Araceli Ramírez Jaspeado Colegio de Postgraduados

DOI:

https://doi.org/10.18633/biotecnia.v24i1.1468

Keywords:

alkali treatment, fiber lenght, mechanical properties

Abstract

The use of composite materials of bio-based polymers reinforced with natural fibers has been an eco-friendly alternative to several application sectors. The objective of this paper was to study the mechanical behavior, degradability and its physical properties of six starch – based biocomposites reinforced with bagasse fiber, made with three different fiber lengths (1 mm, 0.5 mm and 0.25 mm) and with or without the application of an alkali fiber pretreatment. Biocomposites were characterized by mechanical tests (tensile, compressive and flexural), as well as water absorption and biodegradability analysis. The mechanical strength of the material was significantly influenced by the alkali fiber pretreatment and fiber length. The weight loss of all composites, attributed to their biodegradability, was higher than 70 % after the fourth week. The mechanical strength of the composite with fiber length of 0.25 mm and alkali fiber pretreatment was higher than the other treatments, thus, the mentioned composite is a promising eco-friendly proposal for many applications.

Downloads

Download data is not yet available.

References

Bahl, S., Dolma, J., Singh, J.J. y Sehgal, S. 2021. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings. 39: 31-34.

Becerra, A.P., Buitrago, A.L. y Pinto, P. 2016. Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia. Ing. Solidaria. 12(20): 133-149.

Cabrera, E., León V., De la Caridad Montano A. y Dopico D. 2016. Caracterización de residuos agroindustriales con vistas a su aprovechamiento. Centro azúcar. 43: 27-35.

FAO (Food and Agriculture Organization of the United Nations). Bases de datos estadísticos. FAOSTAT. [Consultado octubre 2019] 2017. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize (Accessed October 2019).

Franco, C.R., Cyras, V.P., Busalmen, J.P., Ruseckaite, R.A. y Vázquez, A. 2004. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer degradation and stability. 86: 95-103.

Guleria, A., Singh, A. y Rana, R.K. 2018. Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites. Advances in polymer technology. 37(1): 1-9.

Ibrahim, H., Farag, M., Megahed, H. y Mehanny, S. 2014. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydrate polymers. 101: 11-19.

IMPI (Instituto Mexicano del Plástico Industrial). 2000. Enciclopedia del plástico, Tomo I. México: Autor.

Jumaidin, R., Sapuan, S.M., Jawaid, M., Ishak, M.R. y Sahari, J. 2017. Thermal, mechanical, and physical properties of seaweed/sugar palmfibre reinforced thermoplastic sugar palm Starch/Agar hybridcomposites. Inter. Journal of biological macromolecules. 97: 606-615.

Lois, J. 1982. Sistemas y equipos de desmedulado en la industria del bagazo de la caña de azúcar. Editorial Científico-Técnica. La Habana, Cuba.

Loubes, M.A. y Tolaba, M. 2013. Arroz: rendimiento de molienda mediante análisis de imágenes. La alimentación latinoamericana. 308: 44-49.

Mazzanti, V., Pariante, R., Bonanno, A., Ruiz de Ballesteros, O., Mollica, F. y Filippone, G. 2019. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites science and technology. 180: 51- 59.

Morgan, P. 2005. Carbon fibers and their composites. Taylor and Francis Group. Florida, USA.

ONU (Organización de las Naciones Unidas). Noticias ONU. Compromiso mundial para reducir los plásticos de un solo uso. [Consultado 19 agosto de 2021] 2019. Disponible en: https://news.un.org/es/story/2019/03/1452961

Prachayawarakorn, J., Sangnitidej, P. y Boonpasith, P. 2010. Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydrate polymers. 81: 425–433.

Qin, M., Chen, C., Song, B., Shen, M., Cao, W., Yang, H., Zeng, G. y Gong, J. 2021. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? Journal of Cleaner Production. 312 art. 127816.

Saba, N., Pariadah, M.T. y Jawaid, M. 2015. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and building materials. 76: 87–96.

SIAP (Servicio de Información Agroalimentaria y Pesquera). Anuario Estadístico de la Producción Agrícola. Producción nacional de caña de azúcar. [Consultado 16 agosto 2021] 2020. Disponible en: https://nube.siap.gob.mx/cierreagricola/

Silva, C. G., Campini, P.A.L., Rocha, D.B. y Rosa, D.S. 2019. The influence of treated eucalyptus microfibers on the properties of PLA biocomposites. Composites science and technology. 179: 54-62.

Tamayo, E., Sarasty, O. y Mosquera, E. 2017. Aprovechamiento de residuos ligno-celulósicos en la elaboración de empaques secundarios ecológicos. Rev. Ind. Data 20(2): 37-42.

Tumwesigye, K.S., O’Brien, E., Oliveira, J.C., Crean, A. y Sousa-Gallagher, M.J. 2020. Engineered food supplement excipients from bitter cassava for minimisation of cassava processing waste in environment. Future Foods. 1-2 art. 100003.

Ubaque, C.A. y Fernando, I. 2018. Elaboración de bioempaques a partir de almidones nativos y aceites esenciales prolongando vida útil en fresas. Rev. Colombiana de investigaciones agroindustriales 5(1): 71-86.

Wang, P., Chen, F., Zhang, H., Meng, W., Sun, Y. y Liu, C. 2017. Large-scale preparation of jute-fiber-reinforced starch-based composites with high mechanical strength and optimized biodegradability. Starch/Stärke. 69: 1-11.

Wilcox, C., Van Sebille, E. y Hardesty, B.D. 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences of U.S.A. 112(38): 11899-11904.

Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., Xu, J. y Chen, S. 2018. A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate polymers. 189: 56-64.

Published

2022-02-23

How to Cite

Díaz Herrera, Y., Villaseñor Perea , C. A., Pérez López, A., Mancera Rico, A., Venegas Ordoñez, M. del R., & Ramírez Jaspeado, A. (2022). Preparation and physical – mechanical characterization of biocomposites based on rice flour and cane bagasse fiber. Biotecnia, 24(1), 23–29. https://doi.org/10.18633/biotecnia.v24i1.1468

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

You may also start an advanced similarity search for this article.