Effect of the addition of oat resistant starch type 3 on the viscoelastic properties of the dough and its influence on the quality of cookies
Oat resistant starch type 3
DOI:
https://doi.org/10.18633/biotecnia.v25i2.1854Keywords:
Resistant starch, Viscoelastic properties, Texture Profile Analysis, Sensory evaluationAbstract
Resistant starch type 3 (RS3) was obtained by the autoclaving process using oatmeal. The RS3 was added at different concentrations (0, 5, 10, 15 and 20 %, w/w) in a dough for the production of cookies. The rheological and textural properties of the RS3 doughs were analyzed by viscoelastic tests and texture profile analysis (TPA), respectively. The quality of the cookies was determined by sensory analysis and the evaluation of hardness and color. The TPA showed a significant increase (p < 0.05) in the variables of fracturability, hardness, adhesiveness and rubberiness. The incorporation of RS3 increased the elastic (G´) and viscous (G´´) modulus compared to the control mass. All treatments presented an elastic behavior (G´> G´´). The hardness in the cookies increased (p < 0.05) with the concentration of RS3, with values ranging from ≈ 8 N (control) to 20 N (RS20 %). The sensory tests did not show significant differences between the control cookie and the cookie that presented the highest amount of RS3; the latter being the most preferred. The addition of RS3 in the dough caused significant functional and textural changes that positively affected the quality attributes of the cookies.
Downloads
References
AACC. 2000. Approved Methods of the AACC. American Association of Cereals Chemists. St. Paul, MN, USA.
Adebowale, K.O., Adeniyi Afolabi, T. y Lawal, O.S. 2002. Isolation, chemical modification and physicochemical characterisation of Bambarra groundnut (Voandzeia subterranean) starch and flour. Food Chemistry. 78(3): 305-311.
Agrahar-Murugkar, D., Dwivedi, S., Dixit-Bajpai, P. y Kumar, M. 2018. Effect of natural fortification with calcium and protein rich ingredients on texture, nutritional quality and sensory acceptance of cookies. Nutrition & Food Science. 48(5): 807-818.
Akhtar, M. y Dickinson, E. 2007. Whey protein–maltodextrin conjugates as emulsifying agents: An alternative to gum arabic. Food Hydrocolloids. 21(4): 607-616.
Angioloni, A., Balestra, F., Pinnavaia, G.G. y Rosa, M.D. 2008. Small and large deformation tests for the evaluation of frozen dough viscoelastic behaviour. Journal of Food Engineering. 87(4): 527-531.
Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F. y Bello-Pérez, L.A. 2005. Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: partial characterization. Starch-Stärke. 57(9): 405-412.
Aparicio-Saguilán, A., Gutiérrez-Meraz, F., García-Suárez, F.J., Tovar, J. y Bello-Pérez, L.A. 2008. Physicochemical and functional properties of cross-linked banana resistant starch. Effect of pressure cooking. Starch - Stärke. 60(6): 286-291.
Aparicio-Saguilán, A., Sáyago-Ayerdi, S.G., Vargas-Torres, A., Tovar, J., Ascencio-Otero, T.E. y Bello-Pérez, L.A. 2007. Slowly digestible cookies prepared from resistant starch-rich lintnerized banana starch. Journal of Food Composition and Analysis. 20(3): 175-181.
Ashwar, B.A., Gani, A., Shah, A., Wani, I.A. y Masoodi, F.A. 2016. Preparation, health benefits and applications of resistant starch—A review. Starch - Stärke. 68(3-4): 287-301.
Baixauli, R., Sanz, T., Salvador, A. y Fiszman, S.M. 2007. Influence of the dosing process on the rheological and microstructural properties of a bakery product. Food Hydrocolloids. 21(2): 230-236.
Baumgartner, B., Özkaya, B., Saka, I. y Özkaya, H. 2018. Functional and physical properties of cookies enriched with dephytinized oat bran. Journal of Cereal Science. 80: 24-30.
Berry, C.S. 1986. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science. 4(4): 301-314.
Bhattacharya, M., Langstaff, T.M. y Berzonsky, W.A. 2003. Effect of frozen storage and freeze–thaw cycles on the rheological and baking properties of frozen doughs. Food Research International. 36(4): 365-372.
Blanco Canalis, M.S., León, A.E. y Ribotta, P.D. 2019. Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chemistry. 271: 309-317.
Brouns, F., Kettlitz, B. y Arrigoni, E. 2002. Resistant starch and “the butyrate revolution”. Trends in Food Science & Technology. 13(8): 251-261.
Doǧan, İ.S. 2002. Dynamic rheological properties of dough as affected by amylases from various sources. Food / Nahrung. 46(6): 399-403.
Englyst, H.N., Kingman, S.M. y Cummings, J.H. 1992. Classification and measurement of nutritionally important starch fractions. European journal of clinical nutrition. 46 Suppl 2: S33-50.
Fox, E., Shotton, K. y Ulrich, C. 1995. Sigma-Stat: Manual del usuario, versión 2.1 para Windows 95 NT y 3.1. Editorial Jandel Scientific Co. EUA.
Fuentes-Zaragoza, E., Riquelme-Navarrete, M.J., Sánchez-Zapata, E. y Pérez-Álvarez, J.A. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43(4): 931-942.
Galdeano, M.C. y Grossmann, M.V.E. 2006. Oat hulls treated with alkaline hydrogen peroxide associated with extrusion as fiber source in cookies. Food Science and Technology. 26: 123-126.
García Méndez, A.D. y Pacheco de Delahaye, E. 2007. Evaluación de galletas dulces tipo wafer a base de harina de arracacha (Arracacia xanthorrhiza B.). Revista Facultad Nacional de Agronomía-Medellín. 60(2): 4195-4212.
Giuberti, G., Marti, A., Fortunati, P. y Gallo, A. 2017. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. Journal of Cereal Science. 76: 157-164.
González-Soto, R.A., Agama-Acevedo, E., Solorza-Feria, J., Rendón-Villalobos, R. y Bello-Pérez, L.A. 2004. Resistant starch made from banana starch by autoclaving and debranching. Starch - Stärke. 56(10): 495-499.
Goñi, I., García-Diz, L., Mañas, E. y Saura-Calixto, F. 1996. Analysis of resistant starch: a method for foods and food products. Food Chemistry. 56(4): 445-449.
Grabitske, H.A. y Slavin, J.L. 2009. Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition. 49(4): 327-360.
Hess, J.M. y Slavin, J.L. 2018. The benefits of defining “snacks”. Physiology & Behavior. 193: 284-287.
Holm, J., Hagander, B., Björck, I., Eliasson, A.-C. y Lundquist, I. 1989. The effect of various thermal processes on the glycemic response to whole grain wheat products in humans and rats. The Journal of Nutrition. 119(11): 1631-1638.
Hong, S.-R. y Yoo, B. 2012. Effect of resistant starch (RS3) addition on rheological properties of wheat flour. Starch - Stärke. 64(7): 511-516.
Kahraman, K., Aktas-Akylz, E., Ozturk, S. y Koksel, H. 2019. Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. Journal of Cereal Science. 90: 102851.
Kaur, P., Sharma, P., Kumar, V., Panghal, A., Kaur, J. y Gat, Y. 2019. Effect of addition of flaxseed flour on phytochemical, physicochemical, nutritional, and textural properties of cookies. Journal of the Saudi Society of Agricultural Sciences. 18(4): 372-377.
Kim, N.-H., Kim, J.-H., Lee, S., Lee, H., Yoon, J.-W., Wang, R. y Yoo, S.-H. 2010. Combined effect of autoclaving-cooling and cross-linking treatments of normal corn starch on the resistant starch formation and physicochemical properties. Starch - Stärke. 62(7): 358-363.
Korus, J., Witczak, M., Ziobro, R. y Juszczak, L. 2009. The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocolloids. 23(3): 988-995.
Kuakpetoon, D. y Wang, Y.-J. 2001. Characterization of different starches oxidized by hypochlorite. Starch - Stärke. 53(5): 211-218.
Lee, Y.J., Kim, D.-B., Lee, O.-H. y Yoon, W.B. 2016. Characterizing texture, color and sensory attributes of cookies made with jerusalem artichoke (Helianthus tuberosus L.) flour using a mixture design and browning reaction kinetics. International Journal of Food Engineering. 12(2): 107-126.
Mancebo, C.M., Rodriguez, P. y Gómez, M. 2016. Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT-Food Science and Technology. 67: 127-132.
Manley, D., Pareyt, B. y Delcour, J.A.2011. Short dough biscuits. En: Manley’s Technology of Biscuits, Crackers and Cookies (Fourth Edition). D. Manley (eds.). pp. 331-346. Woodhead Publishing. Philadelphia, PA, USA.
Mert, B. y Demirkesen, I. 2016. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT-Food Science and Technology. 68: 477-484.
Morris, G.A., Sims, I.M., Robertson, A.J. y Furneaux, R.H. 2004. Investigation into the physical and chemical properties of sodium caseinate-maltodextrin glyco-conjugates. Food Hydrocolloids. 18(6): 1007-1014.
Mudgil, D., Barak, S. y Khatkar, B.S. 2017. Cookie texture, spread ratio and sensory acceptability of cookies as a function of soluble dietary fiber, baking time and different water levels. LWT-Food Science and Technology. 80: 537-542.
Nugent, A.P. 2005. Health properties of resistant starch. Nutrition Bulletin. 30(1): 27-54.
Núñez-Santiago, M.C., Méndez–Montealvo, M.G. y Solorza–Feria, J. 2001. Introducción a la Reología. Instituto Politécnico Nacional. México, DF. 43-49 y 87-91.
O’Regan, J. y Mulvihill, D.M. 2010. Sodium caseinate–maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Research International. 43(1): 224-231.
Oh, J.-H., Kim, M.-J. y Yoo, B. 2010. Dynamic rheological properties of rice flour-starch blends. Starch-Stärke. 62(6): 321-325.
Olinger, P.M. y Pepper, T.2001. Xylitol. En: Alternative Sweeteners. L. O. Nabors (eds.). pp. 335-365. Marcel Dekker. Basel, New York, USA.
Park, J., Choi, I. y Kim, Y. 2015. Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. LWT-Food Science and Technology. 63(1): 660-666.
Rehman, Z.-u. y Shah, W.H. 2005. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry. 91(2): 327-331.
Rutenberg, M.W. y Solarek, D.1984. Starch derivatives: Production and uses. En: Starch: Chemistry and Technology. R. L. Whistler, J. N. Bemiller y E. F. Paschall (eds.). 2 ed., pp. 311-388. Academic Press. San Diego, CA, USA.
Sajilata, M.G., Singhal, R.S. y Kulkarni, P.R. 2006. Resistant Starch–A Review. Comprehensive Reviews in Food Science and Food Safety. 5(1): 1-17.
Salvador, A., Sanz, T. y Fiszman, S.M. 2006. Dynamic rheological characteristics of wheat flour–water doughs. Effect of adding NaCl, sucrose and yeast. Food Hydrocolloids. 20(6): 780-786.
Sánchez-Rivera, M.M., García-Suárez, F.J.L., Velázquez del Valle, M., Gutierrez-Meraz, F. y Bello-Pérez, L.A. 2005. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers. 62(1): 50-56.
Sanz, T., Fernández, M.A., Salvador, A., Muñoz, J. y Fiszman, S.M. 2005. Thermogelation properties of methylcellulose (MC) and their effect on a batter formula. Food Hydrocolloids. 19(1): 141-147.
Scholz-Ahrens, K.E., Ade, P., Marten, B., Weber, P., Timm, W., Aςil, Y., Glüer, C.-C. y Schrezenmeir, J.r. 2007. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. The Journal of Nutrition. 137(3): 838S-846S.
Šeremešić, M.M., Dokić, L., Nikolić, I., Radosavljević, M. y Šoronja Simović, D. 2013. Rheological and textural properties of short (cookie) dough made with two types of resistant starch. Journal of Texture Studies. 44(2): 115-123.
Sharma, A., Yadav, B.S. y Ritika. 2008. Resistant starch: Physiological roles and food applications. Food Reviews International. 24(2): 193-234.
Shepherd, R., Robertson, A. y Ofman, D. 2000. Dairy glycoconjugate emulsifiers: casein–maltodextrins. Food Hydrocolloids. 14(4): 281-286.
Singh, N., Singh, J., Kaur, L., Singh Sodhi, N. y Singh Gill, B. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry. 81(2): 219-231.
Tecante, A.2001. Viscoelasticity. En: Encyclopedia of Life Support Systems (EOLSS). G. V. Barbosa-Cánovas, P. Juliano y M. A. Rao (eds.). pp. 292-304. Eolss Publishers Cp. Ltd. L. USA.
Unlu, E. y Faller, J.F. 1998. Formation of resistant starch by a twin-screw extruder. Cereal Chemistry. 75(3): 346-350.
Utrilla-Coello, R.G., Agama-Acevedo, E., Osorio-Díaz, P., Tovar, J. y Bello-Pérez, L.A. 2011. Composition and starch digestibility of whole grain bars containing maize or unripe banana flours. Starch - Stärke. 63(7): 416-423.
Villanueva, M., Pérez-Quirce, S., Collar, C. y Ronda, F. 2018. Impact of acidification and protein fortification on rheological and thermal properties of wheat, corn, potato and tapioca starch-based gluten-free bread doughs. LWT-Food Science and Technology. 96: 446-454.
Walpole, E.R., Myers, H.R. y Myers, L.S. 1999. Probabilidad y estadística para ingenieros. Prentice-Hall Hispanoamericana, S. A. México.
Witczak, M., Juszczak, L., Ziobro, R. y Korus, J. 2012. Influence of modified starches on properties of gluten-free dough and bread. Part I: Rheological and thermal properties of gluten-free dough. Food Hydrocolloids. 28(2): 353-360.
Wong, T.H.T. y Louie, J.C.Y. 2016. The relationship between resistant starch and glycemic control: A review on current evidence and possible mechanisms. Starch - Stärke. 69(7-8): 1-9.
Zamudio-Flores, P.B., Bello-Pérez, L.A., Vargas-Torres, A., Hernández-Uribe, J.P. y Romero-Bastida, C.A. 2007. Partial characterization of films prepared with oxidized banana starch. Agrociencia. 41: 837-844.
Zamudio-Flores, P.B., Tirado-Gallegos, J.M., Monter-Miranda, J.G., Aparicio-Saguilán, A., Torruco-Uco, J.G., Salgado-Delgado, R. y Bello-Pérez, L.A. 2015. Digestibilidad in vitro y propiedades térmicas, morfológicas y funcionales de harinas y almidones de avenas de diferentes variedades. Revista Mexicana de Ingeniería Química. 14(1): 81-97.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.