Isolation of native bacteria with potential growth promoting mexican native maize (Zea mays L.)

Authors

  • Monica Guadalupe Sánchez-Ceja Foods Genomics. Universidad de la Ciénega del Estado de Michoacán de Ocampo
  • Pedro Damián Loeza-Lara Foods Genomics. Universidad de la Ciénega del Estado de Michoacán de Ocampo https://orcid.org/0000-0002-7953-5723
  • Santos Carballar-Hernández Foods Genomics. Universidad de la Ciénega del Estado de Michoacán de Ocampo https://orcid.org/0000-0001-8343-2797
  • Rafael Jiménez-Mejía Foods Genomics. Universidad de la Ciénega del Estado de Michoacán de Ocampo https://orcid.org/0000-0003-0121-3457
  • RICARDO IVAN MEDINA-ESTRADA Universidad de la Ciénega del Estado de Michoacán de Ocampo https://orcid.org/0000-0001-7038-1724

DOI:

https://doi.org/10.18633/biotecnia.v26i1.2125

Keywords:

Mexican native maize, Native rizobacteria, Potencial biotechnology

Abstract

Mexican native maize (Zea mays L.) is an emblematic food for Mexico, as it represents an important factor in terms of local economy, culture and biodiversity. Biotechnological techniques using plant growth-promoting bacteria (PGPB) are a sustainable alternative to the use of chemical agricultural inputs for corn production; however, it is important to emphasize that the ideal is to use native PGPB into the soil and/or crop where they are to be applied, since this ensures the PGPB adaptation and guarantees the colonization of the rhizosphere, improving crop yields. Therefore, the objective of the present work was to isolate native bacteria from soils cultivated with Mexican native maize and to demonstrate their biotechnological potential as PGPB in corn. Soil samples were taken from the municipality of Jiquilpan, Michoacán, Mexico and 40 isolates were obtained, of which 18 showed more than 90% germination of maize seeds. In addition, four isolates showed increases of 20 to 30 % in total shoot length and increases of 25 to 100 % in total plant dry weight. The mechanisms associated with maize growth promotion were phosphate solubilization, indole acetic acid and siderophore production, as well as antagonism against phytopathogenic fungi (Penicillium, Rhizopus, Fusarium and Colletotrichum). Therefore, we conclude that the native PGPB isolated in the present study have biotechnological potential for use in Mexican native maize in the region.

Downloads

Download data is not yet available.

References

Al-Tammar, F.K. y Khalifa, A.Y. Z. 2022. Plant growth promoting bacteria drive food security. Brazilian journal of biology, 82, e267257. DOI: https://doi.org/10.1590/1519-6984.267257

Amezquita-Aviles, C.F., Coronel-Acosta, C.B., de los Santos-Villalobos, S., Santoyo, G. y Parra-Cota, F.I. 2021. Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the develop-ment of maize (Zea mays L.). Biotecnia, 24(1): 15-22. DOI: https://doi.org/10.18633/biotecnia.v24i1.1353

Armada, E., Leite, M.F.A., Medina, A., Azcón, R., y Kuramae, E.E. 2018. Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiology Ecology, 94(7). DOI: https://doi.org/10.1093/femsec/fiy092

Belisário, R., Robertson, A.E., y Vaillancourt, L.J. 2022. Maize Anthracnose Stalk Rot in the Genomic Era. Plant Disease, 106(9), 2281–2298. DOI: https://doi.org/10.1094/PDIS-10-21-2147-FE

Beltrán Pineda, M.E. 2014. Phosphate solubilization as a microbial strategy for promoting plant growth. Corporación Colombiana de Investigación Agropecuaria, 15(1):101-113.

Barceló-Antemate, D. 2016. Rutas de síntesis completas de aminoácidos en aislados de Bacillus cereus de una comunidad microbiana de Cuatrociénegas, Coahuila con fenotipo de auxotrofías. Tesis de maestría. Centro de Investigación y de Estudios Avanzados (CINVESTAV).

Casasola-Bado M.J. 2022. Importance of a correct Gram stain in identifying bacteria. Revista del Colegio de Microbiología, Química y Clínica de Costa Rica, 27(2): 89-98.

Cisneros R, C.A., Sánchez de P, M. y Menjivar F, J.C. 2017. Identification of phosphate solubilizing bacteria in a Andisol of Colombian coffee region. Revista Colombiana de Biotecnología, 19(1): 21-28. DOI: https://doi.org/10.15446/rev.colomb.biote.v19n1.65966

Chavez-Díaz, I.F., Mena-Violante, H.G., Hernandez-Lauzardo, A.N., Oyoque-Salcedo, G., Oregel-Zamudio, E. y Angoa-Perez, M.V. 2019. Postharvest control of Rhizopus stolonifer on black Berry (Rubus fruticosus) by blackberry native crop bacteria. Revista de la Facultad de Ciencias Agracias, 51(2): 306-317.

Constantino, M., Gómez, R., Álvarez, J.D., Pat, J.M. y Espín, E.G. 2011. Efecto de la inoculación de Azotobacter chroococcum y Glomus intraradices en el crecimiento y nutrición de plántulas de papaya en fase de vivero. Agronomía Costarricense, 35(1): 15-31. DOI: https://doi.org/10.15517/rac.v35i1.6685

De Araujo, F.F., Souza, E.C., Guerreiro, R.T., Guaberto, L.M. y De Araujo, A.S.F. 2012. Diversity and growth-promoting activities of Bacillus sp. in maize. Revista Caatinga, 25(1): 1-7.

Diario Oficial de la Federación. 2012. Acuerdo por el que se determinan centros de origen y centros de diversidad genética del maíz. [Consultado 15 mayo 2023] 2012. Disponible en: http://www.dof.gob.mx

Figueroa, M., Rodríguez, R., Guerrero, B., González, M. y Pons, J. 2010. Caracterización de especies de Fusarium asociadas a la pudrición de raíz de maíz en Guanajuato, México. Revista Mexicana de Fitopatología, 28, 124-134.

Florez-Márquez, J.D., Leal-Medina, G.I., Ardila-Leal, L.D. y Cárdenas-Caro, D.M. 2017. Isolation and characterization of rhizobacteria associated with rice crops (Oryza sativa L.) in Norte de Santander (Colombia). Agrociencia, 51(4): 373-391.

García, J. E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J.A., y Groppa, M.D. 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21–29. DOI: https://doi.org/10.1016/j.micres.2017.04.007

García-de la Paz, N.C., Gallegos-Robles, M.A., González-Salas, U., Rodríguez-Sifuentes, L., Mendoza-Renata, S.S. y Sánchez-Lucio, R. 2022. Potencial de Bacillus nativos de la Comarca Lagunera como biofertilizante en la producción de maíz forrajero. Revista Mexicana de Ciencias Agrícolas, 28, 253-261. DOI: https://doi.org/10.29312/remexca.v13i28.3280

Garcia-Lemos, A.M., Großkinsky, D.K., Saleem Akhtar, S., Nicolaisen, M.H., Roitsch, T., Nybroe, O., y Veierskov, B. 2020. Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Frontiers in Micro-biology, 11, 566613. DOI: https://doi.org/10.3389/fmicb.2020.566613

Garcia Ruiz, M. T., Knapp, A. N., & Garcia-Ruiz, H. 2018. Profile of genetically modified plants authorized in Mexico. Biotechnology in Agriculture and the Food Chain, 9(3): 152–168. DOI: https://doi.org/10.1080/21645698.2018.1507601

Grageda-Cabrera, O.A., Díaz-Franco, A., Peña-Cabriales, J.J. y Vera-Nuñez, J.A. 2012. Impact of biofertilizers in agriculture. Revista Mexicana de Ciencias Agrícolas, 3(6): 1261-1274. DOI: https://doi.org/10.29312/remexca.v3i6.1376

Guillen-de la Cruz, P., Velázquez-Morales, R., de la Cruz-Lázaro, E., Márquez-Quiroz, C. y Osorio-Osorio, R. 2018. Seed germination and vigor of landrace maize populations with different proportion of vitreous en-dosperm. Chilean Journal Agricultural & Animal Science, 34(2): 108-117.

Haskett, T.L., Tkacz, A., y Poole, P.S. 2021. Engineering rhizobacteria for sustainable agriculture. The International Society for Microbial Ecology Journal, 15(4): 949–964. DOI: https://doi.org/10.1038/s41396-020-00835-4

Higdon, S.M., Pozzo, T., Tibbett, E.J., Chiu, C., Jeannotte, R., Weimer, B.C. y Bennett, A.B. 2020. Diazotrophic bacteria from maize exhibit multifaceted plant growth promotion traits in multiple hosts. PloS One, 15(9), e0239081. DOI: https://doi.org/10.1371/journal.pone.0239081

Hu, J., Yang, T., Friman, V.P., Kowalchuk, G.A., Hautier, Y., Li, M., Wei, Z., Xu, Y., Shen, Q., y Jousset, A. 2021. Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proceedings. Biological Sciences, 288(1960), 20211396. DOI: https://doi.org/10.1098/rspb.2021.1396

Huete Arrieta, Y.R., Torres Domínguez, J. y Dominguez Palacio, D. 2019. Morphological behaviorof maize inoculated with Azotobacter chroococcum at reduced dosage of nitrogen fertilizer. Avances, 21(2): 1-9.

Imade, E.E., y Babalola, O.O. 2021. Biotechnological utilization: the role of Zea mays rhizospheric bacteria in ecosystem sustainability. Applied Microbiology and Biotechnology, 105(11): 4487–4500. DOI: https://doi.org/10.1007/s00253-021-11351-6

Jiménez-Mejía, R., Corona-Márquez, M., Zepeda-García, J.G., Rodríguez-Cárdenas, C., Santoyo, G., Mo-rales-Cedeño, L.R., Medina-Estrada, R.I., Sánchez-Ceja, M. y Loeza-Lara, P.D. 2023. Sodium octano-ate-funcionalized chitosan coating reduces dry rot caused by Fusarium Sambucinum (AUC-TZ-1) in potato minitubers in storage. Potato Research, 09615. DOI: https://doi.org/10.1007/s11540-023-09615-x

Kawaguchi, M., y Syono, K. 1996. The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Plant & Cell Physiology, 37(8): 1043–1048. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a029051

Korenblum, E., Massalha, H., y Aharoni, A. 2022. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. The Plant Cell, 34(9): 3168–3182. DOI: https://doi.org/10.1093/plcell/koac163

Lara-Mantilla, C., Villalba-Anaya, M. y Oviedo-Zumaqué, L.E. 2007. Non-symbiotic bacterial diazotrophs from of agricultural crops of San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2): 6-14.

Laynez-Garsaball, J.A., Méndez Natera, J.R. y Mayz-Figueroa, J. 2007. Seedling growth from three seed sizes of two corn (Zea mays L.) cultivars sowed in sand and watered with three osmoticant solutions of sucrose. IDESIA (Chile), 25(1): 21-36. DOI: https://doi.org/10.4067/S0718-34292007000200004

León Mendoza, L.H. 2014. Determination of plant growth promoting potencial of enterobacteriaceae isolated from the rhizosphere of maize (Zea mays L.). Scientia Agropecuaria, 5(2014): 177-185.

Mano, Y., y Nemoto, K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 63(8), 2853–2872. DOI: https://doi.org/10.1093/jxb/ers091

Marag, P.S. y Suman, A. 2018. Growth stage and tissue especific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, 214(2018): 101-113. DOI: https://doi.org/10.1016/j.micres.2018.05.016

Marquina, M.E., Ramírez, Y. y Castro, Y. 2018. Efecto de bacterias rizosféricas en la germinación y crecimiento del pimentón Capsicum annuum L. var. Cacique Gigante. Bioagro, 30(1): 3-16.

Mau, S., Vega, K. y Sánchez, M. 2011. Isolating soil bacteria and their potential use in systems for wastewater treatment. Tropical Journal of Environmental Sciences, 42(2): 45-52.

Molina, J.E. 2021. The green revolution as a technoscientific revolution: artificialization of agricultural practices and its implications. Revista Colombiana de Filosofía de la Ciencia, 21(42): 175-204.

Montañez, A., Blanco, A.R., Barlocco, C., Beracochea, M. y Sicardi, M. 2012. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology, 58, 21-28. DOI: https://doi.org/10.1016/j.apsoil.2012.02.009

Montesinos, E. 2003. Plant-Associated Microorganisms: A View from the Sco¬pe of Microbiology. International Microbiology, 6, 221-223. DOI: https://doi.org/10.1007/s10123-003-0141-0

Morales-Cedeño, L.R., de los Santos-Villalobos, S. y Santoyo, G. 2021. Functional and genomic analysis of Rouxiella bandensis SER3 as a novel biocontrol agent of fungal pathogens. Frontiers in Microbiology, 12, 1-14. DOI: https://doi.org/10.3389/fmicb.2021.709855

Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microor-ganisms. FEMS Microbiology Letters, 170(1): 265-270. DOI: https://doi.org/10.1016/S0378-1097(98)00555-2

Olanrewaju, O.S., y Babalola, O.O. 2019. Streptomyces: implications and interactions in plant growth promo-tion. Applied Microbiology and Biotechnology, 103(3): 1179–1188. DOI: https://doi.org/10.1007/s00253-018-09577-y

Parra-Cota, F.I., Peña-Cabriales, J.J., de Los Santos-Villalobos, S., Martínez-Gallardo, N.A., y Délano-Frier, J.P. 2014. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Am-aranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PloS One, 9(2), e88094. DOI: https://doi.org/10.1371/journal.pone.0088094

Pereira, S.I.A., Abreu, D., Moreira, H., Vega, A., y Castro, P.M.L. 2020. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. DOI: https://doi.org/10.1016/j.heliyon.2020.e05106

Pérez-Rodriguez, M.M., Piccoli, P., Anzuay, M.S., Baraldi, R., Neri, L., Taurian, T., Lobato Ureche, M. A., Segura, D.M., y Cohen, A.C. 2020. Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 10(1), 15642. DOI: https://doi.org/10.1038/s41598-020-72507-4

Pérez-y-Terrón, R., Gonzalez-Montfort, T.S. y Muñoz-Rojas, J. 2014. Antagonismo microbiano asociado a cepas bacterianas provenientes de jitomate (Lycopersicum esculentum Mill) y maíz (Zea mays). Revista Iberoame-ricana de Ciencias, 1(3): 53-60. DOI: https://doi.org/10.23913/ciba.v1i1.13

Rabie, C.J., Lübben, A., Schipper, M.A.A., van Heerden, F.R. y Fincham, J.E. 1985. Toxigenicity of Rhizopus species. International Journal of Food Microbiology, 1(5):263-270. DOI: https://doi.org/10.1016/0168-1605(85)90018-2

Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consump-tion. Annals of the New York Academy of Sciences, 1312, 105–112. DOI: https://doi.org/10.1111/nyas.12396

Robles-Yerena, L., Rodríguez-Mendoza, J., Santoyo, G., Ochoa-Alvarado, X.I., Medina-Estrada, R.I., Jimé-nez-Mejía, R. y Loeza-Lara, P.D. 2022. Phylogenetic identification of fungi isolated from strawberry and papaya fruits and their susceptibility to fatty acids. The Canadian Journal of Plant and Pathology, 20(8): 44-57. DOI: https://doi.org/10.1080/07060661.2022.2084457

Rojas-Badía, M., Bello-González, M.A., Ríos-Rocajull, Y.R. y Rodríguez-Sánchez, J. 2020. Plant growth promotion of commercial vegetable crops by Bacillus strains. Acta Agronómica, 69(1): 54-60. DOI: https://doi.org/10.15446/acag.v69n1.79606

Rowe, S.L., Norman, J.S. y Friesen, M.L. 2018. Coercion in the evolution of plant-microbe communication: A perspective. Molecular Plant-Microbe Interactions, 31(8): 789-794. DOI: https://doi.org/10.1094/MPMI-11-17-0276-CR

Sachdev, D. P., Chaudhari, H. G., Kasture, V. M., Dhavale, D. D., y Chopade, B. A. 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian Journal of Experimental Biology, 47(12): 993–1000.

Schlemper, T.R., van Veen, J.A., y Kuramae, E.E. 2018. Co-Variation of Bacterial and Fungal Communities in Different Sorghum Cultivars and Growth Stages is Soil Dependent. Microbial ecology, 76(1): 205–214. DOI: https://doi.org/10.1007/s00248-017-1108-6

Schwyn, B., y Neilands, J.B. 1987. Universal chemical assay for the detection and determination of sidero-phores. Analytical Biochemistry, 160(1): 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9

Singh, A., Kumar, M., Verma, S., Choudhary, P. y Chakdar, H. 2020. Plant mi¬crobiome: Trends and prospects for sustainable agriculture. Plant Microbe Symbiosis, 129-151. DOI: https://doi.org/10.1007/978-3-030-36248-5_8

Thiergart, T., Zgadzaj, R., Bozsóki, Z., Garrido-Oter, R., Radutoiu, S., y Schulze-Lefert, P. 2019. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio, 10(5), e01833-19. DOI: https://doi.org/10.1128/mBio.01833-19

Tofiño Rivera, A.P., Carbono Murgas, R.E., Melo Ríos, A.E. y Merini, L.J. 2020. Efecto del glifosato sobre la microbiota, calidad del suelo y cultivo de frijol biofortificado en el departamento del Cesa, Colombia. Revista Argentina de Microbiología, 25(1): 61-71. DOI: https://doi.org/10.1016/j.ram.2019.01.006

Thomas, P., y Sahu, P.K. 2021. Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos. Frontiers in Microbiology, 12, 635810. DOI: https://doi.org/10.3389/fmicb.2021.635810

Tortora, M.L., Díaz–Ricci, J.C., y Pedraza, R.O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives Microbiology, 193, 275–286. DOI: https://doi.org/10.1007/s00203-010-0672-7

Vandicke, J., De Visschere, K., Ameye, M., Croubels, S., De Saeger, S., Audenaert, K. y Haesaert, G. 2021. Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins, 13(3), 202. DOI: https://doi.org/10.3390/toxins13030202

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., y Nasrulhaq Boyce, A. 2016. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules (Basel, Switzerland), 21(5), 573 DOI: https://doi.org/10.3390/molecules21050573

Velasco-Jiménez, A., Acevedo-Hernández, O., Aarland, R.C. y Rodríguez-Sahagún, A. 2020. Bacterias rizosféricas con beneficios potenciales en la agricultura. Terra Latinoamericana, 38(2): 333-345. DOI: https://doi.org/10.28940/terra.v38i2.470

Verbon, E.H. y Liberman, L.M. 2016. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 21(3): 218-229. DOI: https://doi.org/10.1016/j.tplants.2016.01.013

Verma, P., Yadav, A.N., Khannam, K.S., Panjiar, N., Kumar, S., Saxena, A.K. y Suman, A. 2015. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 65, 1885–1899. DOI: https://doi.org/10.1007/s13213-014-1027-4

Wellahausen, E.J., Roberts, E., Hernández, X. y Mangelscorf, P.C. 1951. Razas de maíz en México. Su origen, características y distribución. Folleto Técnico No. 5. Oficina de Estudios Especiales. Secretaría de Agricultura y Ganadería. México, D.F. 236 p.

Wen, J., Shen, Y., Xing, Y., Wang, Z., Han, S., Li, S., Yang, C., Hao, D. y Zhang, Y. 2021. QTL Mapping of Fusarium Ear Rot Resistance in Maize. Plant Disease, 105(3): 558–565. DOI: https://doi.org/10.1094/PDIS-02-20-0411-RE

Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H., y Wang, Y. 2019. The distribution of trypto-phan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules, 24(7): 1411. DOI: https://doi.org/10.3390/molecules24071411

Zhao, Y., Fu, W., Hu, C., Chen, G., Xiao, Z., Chen, Y., Wang, Z., y Cheng, H. 2021. Variation of rhizosphere microbial community in continuous mono-maize seed production. Scientific reports, 11(1); 1544. DOI: https://doi.org/10.1038/s41598-021-81228-1

Published

2023-12-14

How to Cite

Sánchez-Ceja, M. G., Loeza-Lara, P. D., Carballar-Hernández, S., Jiménez-Mejía, R., & MEDINA-ESTRADA, R. I. (2023). Isolation of native bacteria with potential growth promoting mexican native maize (Zea mays L.). Biotecnia, 26, 83–92. https://doi.org/10.18633/biotecnia.v26i1.2125

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.