APLICACIONES BIOMÉDICAS, TEXTILES Y ALIMENTARIAS DE NANOESTRUCTURAS ELABORADAS POR ELECTROHILADO

Autores/as

  • Miguel Angel Robles-García Departamento de Ciencias Médicas y de la Vida, Universidad de Guadalajara.
  • Rodríguez-Félix Francisco Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora.
  • Enrique Márquez-Ríos Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora.
  • Arturo Barrera-Rodríguez Departamento de Ciencias Básicas, Universidad de Guadalajara.
  • Jacobo Aguilar-Martínez Departamento de Ciencias Tecnológicas, Universidad de Guadalajara.
  • Carmen Lizette Del toro-Sánchez Departamento de Ciencias Médicas y de la Vida, Universidad de Guadalajara.

DOI:

https://doi.org/10.18633/bt.v16i2.46

Palabras clave:

electrohilado, nanofibras, biomédica, textil, alimentos.

Resumen

Se ha implementado el uso de nuevas nanoestructuras y técnicas que permitan producir nanopartículas para su aplicación en diversos sectores con la finalidad de mejorar los procesos e incrementar la productividad. Una de éstas es el método de electrohilado ó electrospinning, teniendo la característica de ser sencillo, de bajo costo y utilizar una gran variedad de materiales, convirtiéndolo en uno de los más utilizados. Las estructuras obtenidas poseen características únicas, entre ellas su gran área de contacto y alta porosidad. Debido a estas propiedades, las nanofibras presentan gran interés para ser aplicadas en diferentes áreas, como son la biomédica, textil y de alimentos obteniendo resultados benéficos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmadi, J. (2009). Application of diff erent levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Applied Sciences Journal, 7(1), 24-27.

Amna, T., Hassan, M. S., Pandeya, D. R., Khil, M. S., & Hwang, I. H (2013). Classy non-wovens based on animate L. gasseri-inanimate poly (vinyl alcohol): upstream application in food engineering. Applied Microbiology and Biotechnology, 97(10), 4523-4531.

ANFACO-CECOPESCA. (2009). Nanotecnología en alimentación. Boletín de Vigilancia Tecnológica.

Anghel, I., Grumezescu, A. M., Andronescu, E., Anghel, A. G., Ficai, A., Saviuc, C., Grumezescu V., Vasile B. S., & Chifi riuc, M. C. (2012). Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofi lms development. Nanoscale Research Letters, 7(1), 1-6.

Astete, C. E., Dolliver, D., Whaley, M., Khachatryan, L., & Sabliov, C. M. (2011). Antioxidant Poly (lactic-co-glycolic) Acid nanoparticles made with α-tocopherol–ascorbic acid surfactant. ACS nano, 5(12), 9313-9325.

Becheri, A., Dürr, M., Nostro, P. L., & Baglioni, P. (2008). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV absorbers. Journal of Nanoparticle Research, 10(4), 679-689.

Bilbao-Sáinz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). Composite edible fi lms based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753-3760.

Castillo-Ortega, M., J. Romero, J., Rodríguez, F., Nájera, A. & Herrera, P (2009). Fibrous membranes of cellulose acetate and poly(vinyl Pyrrolidone) by electrospinning method: preparation and characterization. Journal of Applied Polymer Science, 116, 1873-1878.

Castillo-Ortega, M., Najera-Luna, A., Rodríguez-Félix, D., Encinas, J.C., Rodríguez-Félix, F., Romero, J., & Herrera-Franco, P.J. (2011). Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl pyrrolidone) coaxial electrospun fi brous membranes. Materials Science and Engineering C: Materials for Biological Applications, 31, 1772-1778

Castro-Enríquez, D. D., Rodríguez-Félix, F., Ramírez-Wong, B., Torres-Chávez, P. I., Castillo-Ortega, M. M., Rodríguez-Félix, D. E., Armenta-Villegas L., & Ledesma-Osuna, A. I. (2012). Preparation, characterization and release of urea from wheat gluten electrospun membranes. Materials, 5(12), 2903-2916.

Cavaliere, S., Salles, V., Brioude, A., Lalatonne, Y., Motte, L., Monod, P., Cornu D., & Miele, P. (2010). Elaboration and characterization of magnetic nanocomposite fi bers by electrospinning. Journal of Nanoparticle Research, 12(8), 2735-2740.

Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry–recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46.

Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modifi cation of textiles: focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5-18.

Erem, A. D., Ozcan, G., & Skrifvars, M. (2011). Antibacterial activity of PA6/ZnO nanocomposite fi bers. Textile Research Journal, 81(16), 1638-1646.

Erem, A. D., Ozcan, G., & Skrifvars, M. (2013). In vitro assessment of antimicrobial polypropylene/zinc oxide nanocomposite fi bers. Textile Research Journal. doi: 10.1177/0040517513490060

Frey, M. W. (2008). Electrospinning cellulose and cellulose derivatives. Polymer Reviews, 48(2), 378-391.

Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60-72.

Granda, V. M., Valdés, G. A. C., García, C. J. A., & Díaz, G. M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta, 166(1-2), 1-19.

Gutiérrez W. C. E., Mendoza A. D., Mondragón G. G., Pérez H. R., Fernández G. M. E., Pérez A. M., Gutiérrez W. E. S., Arenas A. J. A., & Ángeles C. C. (2010). Crecimiento controlado de estructuras unidimensionales de plata: síntesis, caracterización y aplicaciones. Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la Ciencia y la Tecnología en México.

Harrison, C. (2013). Nanotechnology: Biological proteins knock nanoparticles off target. Nature Reviews Drug Discovery, DOI: 10.1038/nrd3983

Hu, B., Ting, Y., Zeng, X., & Huang, Q. (2013). Bioactive peptides/ chitosan nanoparticles enhance cellular antioxidant activity of (−)-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 61(4), 875-881.

Huang, J., Liu, L., & Yao, J. (2011). Electrospinning of Bombyxmori silk fi broin nanofi ber mats reinforced by cellulose nanowhiskers. Fibers and Polymers, 12(8), 1002-1006.

Jones D. (2007). Cancer nanotechnology: Small, but heading for the big time. Nature Reviews Drug Discovery, 6, 174-175. Kaya, C. H., & Mallikarjunan, K. (2012). Better Nutrients and Therapeutics Delivery in Food Through Nanotechnology. Food Engineering Reviews, 4, 114-123.

Khoddami, A., Shokohi, S. S., Morshed, M., & Abedi, D. (2011). Simultaneous application of silver nanoparticles with different crease resistant fi nishes. Fibers and Polymers, 12(5), 635-641.

Ko, J. H., Yin, H., An, J., Chung, D. J., Kim, J. H., & Lee, S. B. (2010). Characterization of cross-linked gelatin nanofi bers through electrospinning. Macromolecular Research, 18(2), 137-143.

Lee, C. J., Lee, S., Jhon, M. S., & Shin, J. (2013). Factors infl uencing nanotechnology commercialization: an empirical analysis of nanotechnology fi rms in South Korea. Journal of Nanoparticle Research, 15(2), 1-17.

Lee, J. S., Kim, G. H., & Lee, H. G. (2010). Characteristics and antioxidant activity of Elsholtziasplendensextract-loaded nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3316-3321.

Lee, S. (2009). Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fi bers. Fibers and Polymers, 10(3), 295-301.

Mitchell, G. R., & Davis, F. (2011). Electrospinning and tissue engineering. In Advances on Modeling in Tissue Engineering. P.R. Fernandes and P.J. Bártolo (eds.), pp. 111-136. Springer Netherlands.

Moghe, A. K., & Gupta, B. S. (2008). Co-axial electrospinning for nanofi ber structures: Preparation and applications. Polymer Reviews, 48(2), 353-377.

Mohammed Fayaz, A., Balaji, K., Girilal, M., Kalaichelvan, P. T., & Venkatesan, R. (2009). Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate fi lms for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57(14), 6246 6252.

Morgalev, Y. N., Khoch, N. S., Morgaleva, T. G., Gulik, E. S., Borilo, G. A., Bulatova, U. A., Morgalev S.Y., & Ponyavina, E. V. (2010). Biotesting nanomaterials: Transmissibility of nanoparticles into a food chain. Nanotechnologies in Russia, 5(11-12), 851-856.

Ohkawa, K., Hayashi, S., Nishida, A., Yamamoto, H., & Ducreux, J (2009). Preparation of pure cellulose nanofi ber via electrospinning. Textile Research Journal, 79(15), 1396-1401.

Radetić, M. (2013). Functionalization of textile materials with silver nanoparticles. Journal of Materials Science, 48(1), 95-107.

Ribeiro, L. S., Pinto, T., Monteiro, A., Soares, O. S. G. P., Pereira, C., Freire, C., & Pereira, M. F. R. (2013). Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 48, 5085-5092.

Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498.

Rodríguez K., Gatenholm P., & Renneckar S. (2012). Electrospinning cellulosic nanofi bers for biomedical applications: structure and in vitro biocompatibility. Cellulose, 19, 1583-1598.

Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development–a food industry perspective. Trends in Food Science & Technology, 17(10), 547-556.

Schiff man J. D., & Schauer C.L. (2008). A review: Electrospinning of biopolymer nanofi bers and their applications. Polymers Reviews, 48(2), 317-35.2

Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 119, 781-992.

Shrivastava, S., & Dash, D. (2012). Nanotechnology in food sector and agriculture. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82(1), 29-35.

Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006.

Son, W. K., Youk, J. H., & Park, W. H. (2006). Antimicrobial cellulose acetate nanofi bers containing silver nanoparticles. Carbohydrate Polymers, 65(4), 430-434.

Su, C. I., Lai, T. C., Lu, C. H., Liu, Y. S., & Wu, S. P. (2013). Yarn formation of nanofi bers prepared using electrospinning. Fibers and Polymers, 14(4), 542-549.

Su, Y., Li, X., Wang, H., He, C., & Mo, X. (2009). Fabrication and characterization of biodegradable nanofi brous mats by mix and coaxial electrospinning. Journal of Materials Science: Materials in Medicine, 20(11), 2285-2294.

Tang, B., Kaur, J., Sun, L., & Wang, X. (2013). Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose, 20(6), 3053-3065.

Tan, S. J., Campolongo, M. J., Luo, D., & Cheng, W. (2011). Building plasmonic nanostructures with DNA. Nature Nanotechnology, 6(5), 268-276.

Xie, J., & Xia, Y. (2008). Electrospinning: An Enabling Technique for Nanostructured Materials. Material Matters: 3-D Nano and Micro Structures, 3(1), 19-22.

Descargas

Publicado

2014-08-30

Cómo citar

Robles-García, M. A., Francisco, R.-F., Márquez-Ríos, E., Barrera-Rodríguez, A., Aguilar-Martínez, J., & Del toro-Sánchez, C. L. (2014). APLICACIONES BIOMÉDICAS, TEXTILES Y ALIMENTARIAS DE NANOESTRUCTURAS ELABORADAS POR ELECTROHILADO. Biotecnia, 16(2), 44–52. https://doi.org/10.18633/bt.v16i2.46

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.