Effect of the extruded amaranth flour addition on the nutritional, nutraceutical and sensory quality of tortillas produced from extruded creole blue maize flour

Autores/as

  • Laura Celeste Gámez-Valdez
  • Roberto Gutiérrez-Dorado
  • Carlos Alberto Gómez-Aldapa
  • Janitzio Xiomara Korina Perales-Sánchez
  • Jorge Milán-Carrillo
  • Edith Oliva Cuevas-Rodríguez
  • Saraid Mora-Rochín
  • Cuauhtémoc Reyes Moreno Universidad Autónoma de Sinaloa https://orcid.org/0000-0003-4577-1629

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1385

Palabras clave:

Maíz criollo azul, amaranto, extrusión, tortillas funcionales, propiedades sensoriales

Resumen

México sufre problemas de desnutrición, anemia, sobrepeso y obesidad. Además, las enfermedades crónico degenerativas (ECD) fueron la principal causa de mortalidad en 2018; enfermedades cardiovasculares (ECV) y la diabetes fueron las dos primeras causas de muerte. Las tortillas representan un excelente vehículo para mejorar el estado nutricional de los consumidores de tortillas (Mexicanos). El objetivo del trabajo fue evaluar el efecto de adicionar harina de amaranto extruida (HAE) sobre la calidad (nutricional, nutracéutica, sensorial) de tortillas de harina de maíz azul criollo extruido (HMACE). Las tortillas funcionales se prepararon adicionando 30% de HAE a HMCAE. Se evaluó el efecto de la adición de HAE sobre propiedades nutricionales [perfil aminoácidos esenciales (AAE), digestibilidad proteínica in vitro (DPIV), relación eficiencia proteínica calculada (C-PER)]. Además, se determinaron algunas propiedades nutracéuticas de tortillas. Las tortillas funcionales tuvieron más proteínas, fibra dietaria, DPIV y C-PER, menor AAox (13,187 vs. 15,398 mmol ET/100 g, BS) y mejores potenciales antihipertensivo e hipoglucémico que tortillas 100% HMACE. La adición de HAE a HMACE permite obtener tortillas funcionales con propiedades nutricionales y nutracéuticas in vitro mejoradas y sensorialmente aceptables. Como parte de una política pública, las tortillas funcionales podrían reducir desnutrición e incidencia de enfermedades crónico degenerativas en México.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ademiluyi, A.O., and Oboh, G. 2012. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro. Journal of Basic and Clinic Physiology and Pharmacology 23(1):17-25.
Ademiluyi, A.O., and Oboh, G. 2013. Soybean phenolic-rich extracts inhibit key enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology 65:305-309.
Al-Shukor, N., Van-Camp, J., Gonzales, G.B., Staljanssens, D., Struijs, K., Zotti, M.J., Raes, K., and Smagghe, G. 2013. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure-activity relationships. Journal of Agricultural and Food Chemistry 61:11832−11839.
AOAC. 2012. Association of Official Analytical Chemists. Official Methods of Analysis. Methods: 925.09B, 920.39 C, 960.52, and 985.29. Washington, USA: AOAC.
Argüelles-López, O.D., Reyes-Moreno, C, Gutiérrez-Dorado R, Sánchez-Osuna MF, López-Cervantes J, Cuevas- Rodríguez E.O., Milán-Carrillo, J., Perales-Sánchez, J.X.K. 2018. Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Biotecnia XX: 135-145.
Bedolla, S., and Rooney, L.W. 1984. Characteristics of US and Mexican instant maize flour for tortilla and snack preparation. Cereal Foods World 29:732–735.
Chuck-Hernández, C.E. and Serna-Saldívar, S.O. 2019. Flours and Bread and their Fortification in Health and Disease Prevention. 2nd edition. In: "Soybean-Fortified Nixtamalized Corn Tortillas and Related Products." Chap 25, Preedy VR, Watson RR (ed), Academic Press, pp 319-333, ISBN: 978-0-12-814639-2.
Escalante-Aburto, A., Ramírez-Wong, B., Torres-Chávez, P.I., Figueroa-Cárdenas, J.D., López-Cervantes, J., Barrón-Hoyos, J.M. and Morales-Rosas, I. 2013. Effect of extrusion processing parameters on anthocyanin content and physicochemical properties of nixtamalized blue corn expanded extrudates. CyTA - Journal of Food 11(sup1): 29-37
Espinoza-Moreno, R.J., Reyes-Moreno, C., Milán-Carrillo, J., López-Valenzuela, J.A., Paredes-López, O. and Gutiérrez-Dorado, R. 2016. Healthy ready-to-eat expanded snack with high nutritional and antioxidant value produced from whole amarantin transgenic maize and common black bean. Plant Foods for Human Nutrition 71:218-224.
FAO. 2013. Findings and Recommendations of the 2011 FAO Expert Consultation on Protein Quality Evaluation in Human Nutrition. In: "Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation." FAO Food and Nutrition Paper 92. Food and Agriculture Organization of the United Nations, Rome, Italy, Chapter 4, pp. 29.
Gamel, T.H., Linssen, J.P., Mesallam, A.S., Damu, AA, and Shekib, L.A. 2006. Effect of seed treatments on the chemical composition of two amaranth species. Oil, sugars, minerals, and vitamins. Journal of the Science of Food and Agriculture 80:82-89.
Gaxiola-Cuevas, N,, Mora-Rochín, S., Cuevas-Rodríguez, E.O., León-López, L., Reyes-Moreno, C., Montoya-Rodríguez, A. and Milán-Carrillo A. 2017. Phenolic acids profiles and cellular antioxidant activity in tortillas produced from Mexican maize landrace processed by nixtamalization and lime extrusion cooking. Plant Foods for Human Nutrition 72(3):314-320.
Guzmán-Gerónimo, R.I., Alarcón-Zavaleta, T.M., Oliart-Ros, R.M., Meza-Alvarado, J.E., Herrera-Meza, S. and Chávez-Servia, J.L. 2017. Blue maize extract improves blood pressure, lipid profiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. Journal of Medicinal Food 20(2):110-115.
INEGI. 2019. Características de las Defunciones Registradas en México durante 2018. Comunicado de Prensa No 538/19, 31 de octubre de 2019. Dirección de Atención a Medios/Dirección Gral Adjunta de Comunicación: comunicacionsocial@inegi.org.mx
Inyang, U.E., Akindolu, B.E., and Elijah, A.I. 2019. Nutrient composition, amino acid profile, and antinutritional factors of nixtamalized maize flour supplemented with sprouted soybean flour. European Journal of Nutrition and Food Safety 9: 41-51.
León-López, L., Reyes-Moreno, C., Ley-Osuna, A.H., Perales-Sánchez, J.X.K., Milán-Carrillo, J., Cuevas-Rodríguez, E.O. and Gutiérrez-Dorado, R. 2019. Improvement of nutritional and nutraceutical value of nixtamalized maize tortillas by addition of extruded chia flour. Biotecnia XXI (3): 56-66.
Massaretto, I.L., Madureira-Alves, M.F., Mussi de Mira, N.V., Carmona, A.K., and Lanfer-Marquez, U.M. 2011. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on angiotensin I-converting enzyme activity. Journal of Cereal Science 54:263-240.
Milán-Carrillo, J., Gutiérrez-Dorado, R., Perales-Sánchez, J.X.K, Cuevas-Rodríguez, E.O., Ramírez-Wong, B. and Reyes-Moreno, C. 2006. The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal of Food Science and Technology 41:727–736.
Milán-Carrillo, J., Montoya-Rodríguez, A., Gutiérrez-Dorado, R, Perales-Sánchez, J.X.K. and Reyes-Moreno, C. 2012. Optimization of extrusion process for producing high antioxidant instant amaranth (Amaranthus hypochondriacus L.) flour using response surface methodology. Applied Mathematics 3:1516-1525.
Montoya-Rodríguez, A., Milán-Carrillo, J., Reyes-Moreno, C. and González de Mejía, E. 2015. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates. International Journal of Molecular Sciences 16:8536-8554.
Mora-Rochín, S., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O., Sánchez-Peña, P., Reyes-Moreno, C. and Milán-Carrillo, J. 2010. Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. Journal of Cereal Science 52:502–508.
Ogrodowska, D., Zadernowski, R., Czaplicki, S., Derewiaka, D., and Wronowska, B. 2014. Amaranth seeds and products: The source of bioactive compounds. Polish Journal of Food and Nutrition Sciences 64(3):165–170.
Orona-Tamayo, D., and Paredes-López, O. 2016. Amaranth - Sustainable Crop for the 21st Century: Food Properties and Nutraceuticals for Improving Human Health. In: "Sustainable Protein Sources," 1st edition, Nadathyr S (ed), Elsevier Publishers, Chapter 15, pp 239-256.
Orsini-Delgado, M.C., Nardo, A., Pavlovic, M., Rogniaux, H., Añon, M.C., and Tironi, V.A. 2016. Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins. Food Chemistry 197:1160–1167.
Ortiz-Cruz, R.A., Ramírez-Wong, B., Ledesma-Osuna, A.I., Torres-Chávez, P.I., Sánchez-Machado, D.I., Montaño-Leyva, B., López-Cervantes, J. and Gutiérrez-Dorado, R. 2020. Effect of extrusion processing conditions on the phenolic compound content and antioxidant capacity of sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition 75(2):252-257.
Pacheco de Delahaye, E. and Portillo, M.1990. Enrichment of precooked white corn flour (Zea mays) with amaranth seed flour (Amaranthus sp). Archivos Latinoamericanos de Nutrición 40(3):360-368.
Pineda-Hidalgo, K.V., Mendez-Marroquin, K.P., Vega-Alvarez, M., Chávez-Ontiveros, J., Sanchez-Peña, P., Garzon-Tiznado, J.A., Vega-García, M.O. and López-Valenzuela, J.A. 2013. Microsatellite-based genetic diversity among accessions of native landraces from Sinaloa in Mexico. Hereditas 150:53-59.
Quiroga, A.V., Aphalo, P., Nardo, A.E., and Añon, M.C. 2017. In vitro modulation of the renin-angiotensin system enzymes by amaranth (Amaranthus hypochondriacus) protein-derived peptides: Alternative mechanisms different from ACE inhibition. Journal of Agricultural and Food Chemistry 65(34):7415–742.
Ramírez-Jaspeado, R., Palacios-Rojas, N., Funes, J., Pérez, S. and Donnet, M.L. 2018. Identification of potential areas in Mexico for intervention with biofortified high-zinc maize. Revista Fitotecnia Mexicana 41(3): 327-337.
Ramos-Enríquez, J.R., Ramírez-Wong, B., Robles-Sánchez, R.M., Robles-Zepeda, R.E., González-Aguilar, G.A. and Gutiérrez-Dorado R. 2018. Effect of extrusion conditions and the optimization of phenolic compound content and antioxidant activity of wheat bran using response surface methodology. Plant Foods for Human Nutrition 73:228–234.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231-1237.
Sabbione, A.C., Rinaldi, G., Añon, M.C., and Scilingo, A.A. 2016. Antithrombotic effects of 'Amaranthus hypochondriacus proteins in rats. Plant Foods for Human Nutrition 71(1):19-27.
Salas-López, F., Gutiérrez-Dorado, R., Milán-Carrillo, J., Cuevas-Rodríguez, E.O., Canizalez-Román, V.A., León-Sicairos, C.R. and Reyes-Moreno, C. 2018. Nutritional and antioxidant potential of a desert underutilized legume tepary bean (Phaseolus acutifolius). Optimization of germination bioprocess. Food Science and Technology (Campinas) 38(Suppl. 1):254-262.
Sánchez, G.J.J., Goodman, M.M., and Stuber, CW. 2000. Isozymatic and morphological diversity in the races of maize of México. Economic Botany 54:43-59.
Singleton, V.L., Orthofer, R. and Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299:152-178.
Tovar-Perez, E.G., Lugo-Radillo, A. and Aguilera-Aguirre, S. 2019. Amaranth grain as a potential source of biologically active peptides: A review of their identification, production, bioactivity, and characterization. Food Reviews International 35(3):221–245.
Treviño-Mejía, D, Luna-Vital, D.A., Gaytán-Martínez, M., Mendoza, S., and Loarca-Piña, G. 2016. Fortification of commercial nixtamalized maize (Zea mays L) with common bean (Phaseolus vulgaris L) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. Journal of Food Quality 39:569–579.
Urias-Lugo, D.A., Heredia, J.B., Muy-Rangel, M.D., Valdez-Torres, J.B., Serna-Saldívar, S.O., and Gutiérrez-Uribe, J.A. 2015. Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. Plant Foods for Human Nutrition 70(2):193-199.
Vázquez-Rodríguez, J.A., Amaya-Guerra, C.A., Báez-González, J.G., Nuñez-González, M.A. and Figueroa-Cárdenas, J.D. 2013. Study of the fortification with bean and amaranth flours in nixtamalized maize tortilla. CyTA - Journal of Food 11(supl 1):62-66.
Velarde-Salcedo, A.J., Bojorquez-Velázquez, E. and Barba de la Rosa, A.P. 2019. Pseudo Cereal Grains, Whole Food Nutrition Amaranth. In: “Whole Grains and their Bioactives: Composition and Health”, Johnson J, Wallace T (eds), West Sussex, UK, pp 211-250.
WHO. 2019. Available from: https://www.who.int/es/news-room/fact sheets/detail/ noncommunicable-diseases

Publicado

2021-07-01

Cómo citar

Gámez-Valdez, L. C., Gutiérrez-Dorado, R., Gómez-Aldapa, C. A., Perales-Sánchez, J. X. K., Milán-Carrillo, J., Cuevas-Rodríguez, E. O., … Reyes Moreno, C. (2021). Effect of the extruded amaranth flour addition on the nutritional, nutraceutical and sensory quality of tortillas produced from extruded creole blue maize flour. Biotecnia, 23(2), 103–112. https://doi.org/10.18633/biotecnia.v23i2.1385

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.