Hidrolizados enzimáticos con actividad antioxidante y antihipertensiva obtenidos del concentrado proteíco del suero lácteo bovino

Autores/as

  • XOCHITL TOVAR JIMÉNEZ UNIVERSIDAD POLITECNICA DE PACHUCA

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1321

Palabras clave:

péptidos antioxidantes, péptidos antihipertensivos, concentrado proteico del suero lácteo bovino, aspartil proteasa de Sporisorium reilianum, enzimas comerciales.

Resumen

El suero lácteo a pesar de ser considerado un desecho altamente contaminante de la industria quesera cuenta con importantes propiedades nutrimentales, ya que es una fuente rica y equilibrada en aminoácidos que presentan propiedades funcionales que pueden ser aprovechadas. Algunos estudios indican que la hidrólisis enzimática de las proteínas séricas permite liberar péptidos bioactivos. En este estudio se realizó la hidrólisis del concentrado proteico del suero lácteo (WCP) por acción de la aspartil proteasa purificada Sporisorium reilianum (Eap1), las enzimas comerciales quimotripsina (C), tripsina (T) y de la combinación enzimática de estas, con la finalidad de determinar que enzima permite liberar péptidos con mejor actividad antioxidante y antihipertensiva. Los resultados de la actividad biológica indicaron que la Eap1 libera péptidos con mejor actividad en comparación con las enzimas individuales y sus combinaciones.

Citas

Aleixandre, A., Miguel, M. and Muguerza, B. (2008). Péptidos hipertensivos derivados de proteínas de leche y huevo. Nutrición Hospitalaria 23, 313-318.
Atacan, K., Cakiroglu, B. and Ozacar, M. (2016). Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chemistry 212, 460–468. https://doi.org/10.1016/j.foodchem.2016.06.011
Baró, L., Jiménez, J., Martínez, A. and Bouza, J.J. (2001). Bioactive milk peptides and proteins. ARS Pharmaceutica 42,135-145.
Bayram, T., Pekmez, M., Arda, N. and Yalcin, A. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta 75, 705-9. doi: 10.1016/j.talanta.2007.12.007. Epub 2007 Dec 23.
Clare, D.A. and Swaisgood, H.E. (2000). Bioactive Milk Peptides: A prospectus. Journal of Dairy Science 83, 1187-1195. DOI: 10.3168/jds.S0022-0302(00)74983-6
Dziuba, J., Minkiewicz, P., Nalecz, D. and Iwaniak, A. (1999). Database of biologically active peptide sequences. Nahrung-Food 43, 190-195. DOI: 10.1002/(SICI)1521-3803(19990601)43:3<190::AID-FOOD190>3.0.CO;2-A
Erdmann, K., Cheung, B. and Schroder, H. (2008). The possible roles of foodderived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry 19, 643-54. DOI: 10.1016/j.jnutbio.2007.11.010
Gobbetti, M., Morea, M., Baruzzi, F., Corbo, M.R., Matarante, A., Considine, T., Cagno, R., Guinee, T. and Fox, P.F. (2002). Microbiological, compositional, biochemical and textural character1istics of Caciocavallo Pugliese cheese during ripening. International Dairy Journal 12, 511-523. DOI: 10.1016/S0958-6946(02)00042-0
Hartmann, R. and Meisel, H. (2007). Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology 18, 1-7. https://doi.org/10.1016/j.copbio.2007.01.013
Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews 102, 4501– 4523. https://doi.org/10.1021/cr000033x
Hernández-Ledesma, B., Recio, I. and Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino acids. 35(2): 257-265. DOI: 10.1007/s00726-007-0585-1
Hernández-Ledesma, B., Ramos, M., Recio, I. and Amigo, L. (2006). Effect of β-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides. Journal of Chromatography A 1116, 31-37. DOI: 10.1016/j.chroma.2006.03.006
Kamal, H., Jafar, S., Mudgil, P., Murali, C., Amin, A., Maqsood, S. (2018). Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. Journal of Dairy Science 101, 1-10. doi: 10.3168/jds.2018-14586
Lagrange, V. and Clark, D.C. (2018). Nutritive and Therapeutic Aspects of Whey Proteins. En: Whey Proteins, pp. 549-577. Elsevier Inc.
Luo, J., Li, L. and Kong, L. (2012). Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chemistry, 131:1056–1062. https://doi.org/10.1016/j.foodchem.2011.09.112
Mandujano-González, V., Arana-Cuenca, A., Anducho-Reyes, M.A., Téllez-Jurado, A., González-Becerra, A.E. and Mercado-Flores, Y. (2013). Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum. Protein Expression and Purification 92, 214-222. doi: 10.1016/j.pep.2013.10.003
Maneva, A., Taleva, B. and Maneva, L. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical Design 9, 1289-1295. DOI: 10.2174/1381612033454847
Maoa, Y., Krischkea, M., Hengsta, C., Kulozika, U. (2018). Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chemistry 253, 194–202. https://doi.org/10.1016/j.foodchem.2018.01.151
Mendoza-Jiménez, Y.L, Eusebio-Moreno, J.C., Álvarez-García, R., Abreu-Corona, A., Vargas-Hernández, G., Téllez-Jurado, A., Tovar-Jiménez, X. (2018). Actividad antioxidante de los hidrolizados proteicos del frijol común (Phaseolus vulgaris) cv Negro primavera-28 y Flor de Durazno. Revista de Ciencias Biológicas y de la Salud. 2, 25-30.
Mensink, R.P. (2006). Dairy products and the risk to develop type 2 diabetes or cardiovascular disease. International Dairy Journal 16, 1001-1004. https://doi.org/10.1016/j.idairyj.2005.10.013
Morris-Quevedo, H.J., Almares-Asceo, A., Carrillo-Farnés, O., Abdala-Díaz, R.T. (2001). Combinaciones enzimáticas en la obtención de hidrolizados proteicos a partir de Chlorella vulgaris. Revista Cubana Alimentaría Nutrición 15, 85-89.
Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y. and Negishi, H. (2004). Structural analysis of a new anti-hypertensive peptide (β-lactosin B) isolated from a commercial whey product. Journal of Dairy Science 87, 1967-1974. https://doi.org/10.3168/jds.S0022-0302(04)70013-2
Muro-Urista, C., Álvarez-Fernández, R., Riera-Rodríguez, F., Arana-Cuenca, A. and Téllez-Jurado, A. (2011). Production and functionality of active peptides from milk. Review. Food Science and Technology International 1, 293-317. doi: 10.1177/1082013211398801.
Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T. (1995). Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitors from Sour Milk. Journal of Dairy Science 78, 777-783. DOI: 10.3168/jds.S0022-0302(95)76689-9
Peng, X., Xiong, Y. and Kong, B. (2009). Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chemistry 113, 196-201. https://doi.org/10.1016/j.foodchem.2008.07.068
Peña-Ramos, E. and Xiong, Y. (2001). Antioxidative activity of whey protein hydrolysates in a liposomal system. Journal of Dairy Science 84, 2577-83. DOI: 10.3168/jds.S0022-0302(01)74711-X
Pfeuffer, M. and Schrezenmeir, J. (2006). Milk and the metabolic syndrome. Obesity Reviews 8, 109-118. DOI: 10.1111/j.1467-789X.2006.00265.x
Prioult, G., Pecquet, S. and Fliss, I. (2004). Stimulation of interleukin-10 production by acidic beta-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clinical and Diagnostic Laboratory Immunology 11, 266-71. DOI: 10.1128/CDLI.11.2.266-271.2004
Rocha, C., Gonçalves, M.P., Teixeira, J.A. (2011). Immobilization of trypsin on spent grains for whey protein hydrolysis. Process Biochemistry 46, 505–511. https://doi.org/10.1016/j.procbio.2010.10.001
Thomä-Worringer, C., Sorensen, J. and López-Fandiño, R. (2006). Health effects and technological features of caseinomacropeptide. International Dairy Journal 16, 1324-33. https://doi.org/10.1016/j.idairyj.2006.06.012
Tovar-Jiménez, X., Arana-Cuenca, A., Téllez-Jurado, A., Abreu-Corona, A. and Muro-Urista, C. (2012). Traditional Methods for Whey Protein Isolation and Concentration: Effects on Nutritional Properties and Biological Activity. Journal Mexican Chemistry Society 56, 369-377. https://doi.org/10.29356/jmcs.v56i4.246
Tovar-Jiménez, X., Muro-Urista, C., Téllez-Jurado, A., Abreu-Corona, A. and Arana-Cuenca, A. (2017). Hydrolysate antimicrobial activity released from bovine whey protein concentrate by the aspartyl protease eap1 of Sporisorium reilianum. Rev. Mex. Ing. Quim. 16, 11-18.
Ubalde, M.C. and Cantera, A.M.B. (2002). Utilización de una mezcla de proteasas para la obtención de hidrolizados de bajo grado de hidrólisis. Información Tecnológica 13, 77-84.
Zakharova, E., Horvath, M.P. and Goldenberg, D.P. (2009). Structure of a serine protease poised to resynthesize a peptide bond. Proceedings of the National Academy of Sciences 106, 11034–11039. DOI: 10.1073/pnas.0902463106

Descargas

Publicado

2021-02-19

Número

Sección

Artículos