Streptomicetos aislados de la rizosfera de suelos agrícolas del Valle del Mezquital, México: capacidad de producción in vitro de metabolitos promotores de crecimiento y de antagonismo contra hongos fitopatógenos

Autores/as

  • Yamily Elianeth Castañeda-Cisneros Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara. Zempoala, Hidalgo, C.P.43830, México.
  • Germán Zafra Grupo de Investigación en Bioquímica y Microbiología. Escuela de Microbiología. Universidad Industrial de Santander
  • Yuridia Mercado-Flores Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara. Zempoala, Hidalgo, C.P.43830, México. https://orcid.org/0000-0003-3278-2783
  • Miguel Angel Anducho-Reyes Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara. Zempoala, Hidalgo, C.P.43830, México.
  • María del Rocío Ramírez-Vargas Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara. Zempoala, Hidalgo, C.P.43830, México. https://orcid.org/0000-0003-3811-4137
  • Alejandro Tellez-Jurado Laboratorio de Aprovechamiento Integral de Recursos Bióticos, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara. Zempoala, Hidalgo, C.P.43830, México. https://orcid.org/0000-0002-5491-3679

DOI:

https://doi.org/10.18633/biotecnia.v27.2666

Palabras clave:

Actinomicetos, Agricultura de conservación, Riego con aguas residuales

Resumen

El Valle del Mezquital, México, es una de las principales zonas productoras de diferentes cultivos en el país. Este Valle es irrigado por las aguas residuales provenientes principalmente de la Ciudad de México, esta característica genera condiciones ambientales únicas que pueden incidir sobre los microorganismos de los suelos agrícolas. En el presente trabajo, se aislaron actinomicetos de la rizósfera de suelos agrícolas con el fin de caracterizarlos y determinar su potencial como promotores del crecimiento vegetal y de inhibición de hongos fitopatógenos. Se aislaron 13 cepas del género de Streptomyces, a través del estudio in vitro se observó que todas fueron capaces de producir ácido indol acético, sideróforos y ácidos orgánicos. Streptomyces thinghirensis y Streptomyces lateritus fueron capaces de solubilizar fosfatos y Streptomyces lusitanus de producir HCN. Se identificaron cepas no reportadas con anterioridad con capacidad antagónica contra hongos fitopatógenos siendo los principales Streptomyces pseudogriseolus, Streptomyces atrovirens, Streptomyces lateritius, Streptomyces nigra y Streptomyces griseoplanus. Los resultados obtenidos aportan nuevos conocimientos sobre Streptomycetes que no han sido estudiados previamente y pueden ofrecer herramientas para el control biológico de enfermedades causadas por hongos fitopatógenos, así como estrategias para mejorar la productividad en condiciones de labranza de conservación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alekhya, G., Gopalakrishnan, S. 2014. Characterization of antagonistic Streptomyces as potential biocontrol agent against fungal pathogens of chickpea and sorghum. Philippine Agricultural Scientist. 97: 191-198.

Anwar, S., Ali, B., & Sajid, I. (2016). Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in Microbiology 7(1334), 1-11.

Avalos, M., Garbeva, P., Raaijmakers, J.M., van Wezel, G.P. 2020. Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species. ISME Journal. 14: 569-583.

Bhattacharyya, C., Banerjee, S., Acharya, U., Mitra, A., Mallick, I., Haldar, A., Haldar, S., Ghosh, A. Ghosh A. 2020. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Scientific Reports. 10: 15536.

Borah, A., Thakur, D. 2020. Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Frontiers in Microbiology. 11: 318.

Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., Kouisni, L. 2021. The screening of potassium-and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms. 9: 470.

Bunsangiam, S., Thongpae, N., Limtong, S. Srisuk, N. 2021. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Scientific Reports 11: 13094.

Cappucino, J.C. Sherman, N. (1992). Microbiology: a laboratory manual. New York, Benjamin: Cummings Publishing Company: 125-179.

Castañeda-Cisneros, Y. 2022. Desarrollo de una formulación de actinomicertos productores de enzimas y metabolitos que promueven el crecimiento vegetal para su posible uso en agricultura de conservación. Ph. D. dissertation. Universidad Politécnica de Pachuca, Hidalgo, México.

Chouyia, F.E., Romano, I., Fechtali, T., Fagnano, M., Fiorentino, N., Visconti, D., Idbella, M., Ventorino, V., Pepe, O. 2020. P-Solubilizing Streptomyces roseocinereus MS1B15 With Multiple Plant Growth-Promoting Traits Enhance Barley Development and Regulate Rhizosphere Microbial Population. Frontiers in Plant Science. 11: 1137.

Detraksa, J. 2018. Sugarcane Seedling Growth Promotion by Indole Acetic Acid (IAA) Producing Streptomyces sp. AS14-2 Isolated from Rhizosphere of Sugarcane and Rice. Food and Applied Bioscience Journal. 6: 179-188.

Djebaili, R., Pellegrini, M., Smati, M., Del Gallo, M., Kitouni, M. 2020. Actinomycete strains isolated from saline soils: plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability. 12: 4617.

Djebaili, R., Pellegrini, M., Ercole, C., Farda, B., Kitouni, M., Del Gallo, M. 2021. Biocontrol of soil-borne pathogens of Solanum lycopersicum L. and Daucus carota L. by plant growth-promoting actinomycetes: In vitro and in planta antagonistic activity. Pathogens. 10(10): 1305.

Durán-Álvarez, J.C., Jiménez, B., Rodríguez-Varela, M., Prado, B. 2021. The Mezquital Valley from the perspective of the new Dryland Development Paradigm (DDP): Present and future challenges to achieve sustainable development. Current Opinion in Environmental Sustainability. 48: 139-150.

Elias, F., Woyessa, D., Muleta, D. 2016. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology. 5472601.

Fatmawati, U., Lestari, Y., Meryandini, A., Nawangsih, A.A., Wahyudi, A.T. 2018. Isolation of actinomycetes from maize rhizosphere from Kupang, East Nusa Tenggara Province, and evaluation of their antibacterial, antifungal, and extracellular enzyme activity. Indonesian Journal of Biotechnology. 23: 40-47.

Gómez, B.E., Hernández, A., Herrera, C.H., Arroyo, G., Vargas, L., Olalde, V. 2012. Aislamiento de bacterias promotoras del crecimiento de la rizósfera de plantas de guayaba (Psidium guajava). Ra Ximhai. 8(3): 97–102. León Guanajuato, México.

Gordon, S.A., Weber, R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology. 26: 192.

Gromovykh, T.I., Litovka, Y.A., Sadykova, V.S., Gabidulina, I.G. 2005. Biological characteristics of the new Streptomyces lateritius 19/97-M strain, promising for use in plant production. Biotekhnologiya. 5: 37-40.

Guzmán, A., Obando, M., Rivera, D., Bonilla, R. 2012. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal ( RPCV ) asociadas al cultivo de algodón (Gossypium hirsutum ). Revista Colombiana de Biotecnología. XIV(1): 182–190.

Jarmusch, S.A., Lagos-Susaeta, D., Diab, E., Salazar, O., Asenjo, J.A., Ebel, R., Jaspars, M. 2021. Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant Streptomyces sp. S29 desferrioxamine production. Molecular Omics Journal. 17: 95-107.

Kumar, S., Sindhu, S.S., Kumar, R. 2024. Microbial endophytes: prospects in biological control of plant pathogens and plant growth stimulation for sustainable agriculture. In Plant endophytes and secondary metabolites (pp. 375-422). Academic Press.

Kunova, A., Bonaldi, M., Saracchi, M., Pizzatti, C., Chen, X., Cortesi, P. 2016. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiology. 16: 1-11.

Lambrese, Y., Guiñez, M., Calvente, V., Sansone, G., Cerutti, S., Raba, J., Sanz, M.I. 2018. Production of siderophores by the bacterium Kosakonia radicincitans and its application to control of phytopathogenic fungi. Bioresource Technology Reports. 3: 82-87.

Law, J.W.F., Ser, H.L., Khan, T.M., Chuah, L.H., Pusparajah, P., Chan, K.G., Goh, B., Lee, L.H. 2017. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology. 8: 3.

Leveau, J. Y., Bouix, M. 2000. Microbiología industrial: Los microorganismos de interés industrial. Revista de Química, 15(1), 114–115. Retrieved from http://revistas.pucp.edu.pe/index.php/quimica/article/view/4761

Manigundan, K., Joseph, J., Ayswarya, S., Vignesh, A., Vijayalakshmi, G., Soytong, K., Gopikrishnan, V. Radhakrishnan, M. 2020. Identification of biostimulant and microbicide compounds from Streptomyces sp. UC1A-3 for plant growth promotion and disease control. International Journal of Agriculture Technology. 16: 1125-1144.

Mohammed, A.F. (2020). Influence of Streptomyces sp. Kp109810 on Solubilization of inorganic phosphate and growth of maize (Zea mays L.). Journal of Applied Plant Protection. 9: 17-24.

Naik, J.A., Gupta, G.K. 2020. Optimization of indole acetic acid production by active isolate actinomycetes rm-9 isolated from rizospheric soil of Valsad, Gujarat, India. Journal of Advanced Scientific Research. 11: 194-201.

Olanrewaju, O.S., Babalola, O.O. 2019. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology. 103: 1179-1188.

Passari, A.K., Mishra, V.K., Gupta, V.K., Yadav, M.K., Saikia, R., Singh, B.P. 2015. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS One. 10: e0139468.

Pikovskaya, R.I. 1948. Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology. 17: 362-370.

Qiu, Z.L., Da Liu, S., Li, X.G., Zhong, J., Zhu, J.Z. 2024. Identification and mechanism characterization of Streptomyces griseoaurantiacus XQ-29 with biocontrol ability against pepper southern blight caused by Sclerotium rolfsii. Pesticide Biochemistry and Physiology. 202:105956.

Rehan, M., Alsohim, A.S., Abidou, H., Rasheed, Z., Al Abdulmonem, W. 2021. Isolation, Identification, Biocontrol Activity, and Plant Growth Promoting Capability of a Superior Streptomyces tricolor Strain HM10. Polish Journal of Microbiology. 70: 245.

Sandar, R., Shina, W. 1963. Phosphate dissolving microorganism in the soil and rhizosphere. Indian Journal of Agricultural Sciences. 33: 272-278.

Schwyn, B., Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160: 47-56.

Sehrawat, A., Sindhu, S.S., Glick, B.R. 2022. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere. 32: 15-38.

Shomi, F.Y., Uddin, M.B., Zerin, T. 2021. Isolation and characterization of nitrogen-fixing bacteria from soil sample in Dhaka, Bangladesh. Stamford Journal of Microbiology. 11(1): 11-13.

Short, S.M., van Tol, S., MacLeod, H.J. Dimopoulos, G. 2018. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Scientific Reports. 8: 8358.

Sreevidya, M., Gopalakrishnan, S., Kudapa, H., Varshney, R. K. 2016. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology. 47: 85-95.

Vargas Hoyos, H.A., Chiaramonte, J.B., Barbosa-Casteliani, A.G., Fernandez Morais, J., Perez-Jaramillo, J.E., Nobre Santos, S., Nascimento Queiroz, S.C., Soares Melo, I. 2021. An Actinobacterium Strain From Soil of Cerrado Promotes Phosphorus Solubilization and Plant Growth in Soybean Plants. Fronters in Bioengineering and Biotechnology. 9: 219.

Vatsa-Portugal, P., Aziz, A., Rondeau, M., Villaume, S., Morjani, H., Clément, C., Ait Barka, E. 2017. How Streptomyces anulatus primes grapevine defenses to cope with gray mold: A study of the early responses of cell suspensions. Frontiers in Plant Science. 8: 1043.

Vijayabharathi, R., Kumari, B.R., Sathya, A., Srinivas, V., Abhishek, R., Sharma, H.C., Gopalakrishnan, S. 2014. Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Canadian Journal of Plant Science. 94: 759–769

Vlassi, A., Nesler, A., Parich, A., Puopolo, G., Schuhmacher, R. 2020. Volatile-mediated inhibitory activity of rhizobacteria as a result of multiple factors interaction: The case of Lysobacter capsici AZ78. Microorganisms. 8: 1761.

Vurukonda, S.S.K.P., Giovanadri, D., Stefani, E. 2021. Growth Promotion and Biocontrol Activity of Endophytic Streptomyces spp. Prime Archives in Molecular Sciences, 2nd Edition, 1, 1-55.

Zainal Abidin, Z.A., Abdul Malek, N., Zainuddin, Z., Chowdhury, A.J.K. 2016. Selective isolation and antagonistic activity of actinomycetes from mangrove forest of Pahang, Malaysia. Frontiers in Life Sciences. 9: 24-31.

Zhang, Y., Wang, S., Wang, H., Ning, F., Zhang, Y., Dong, Z., Wen, P., Wang, R., Wang, X., Li, J. 2018. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. Agricultural and Forest Meteorology. 263: 107-117.

Resumen gráfico

Publicado

2025-08-13

Cómo citar

Castañeda-Cisneros, Y. E., Zafra, G., Mercado-Flores, Y., Anducho-Reyes, M. A., Ramírez-Vargas, M. del R., & Tellez-Jurado, A. (2025). Streptomicetos aislados de la rizosfera de suelos agrícolas del Valle del Mezquital, México: capacidad de producción in vitro de metabolitos promotores de crecimiento y de antagonismo contra hongos fitopatógenos. Biotecnia, 27, e2666. https://doi.org/10.18633/biotecnia.v27.2666

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a