Análisis químico-proximal, fitoquímico y potencial bacteriostático de Eichhornia crassipes

Autores/as

  • Emma Nallely López-Medina UNIVERSIDAD POLITÉCNICA DE PACHUCA
  • Rocio Álvarez-García UNIVERSIDAD POLITÉCNICA DE PACHUCA
  • Alejandro Tellez-Jurado UNIVERSIDAD POLITÉCNICA DE PACHUCA
  • Jesús Aguayo-Rojas UNIVERSIDAD AUTÓNOMA DE ZACATECAS
  • Xochitl Tovar-Jiménez UNIVERSIDAD POLITÉCNICA DE PACHUCA

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1638

Palabras clave:

Lirio acuático, composición químico-proximal; fitoquímicos; antimicrobianos.

Resumen

Una de las preocupaciones de la sociedad son los problemas de salud asociados a la resistencia bacteriana a múltiples fármacos, es por ello, que la búsqueda de productos naturales con actividad antimicrobiana es relevante. En este sentido, se ha demostrado que Eichhornia crassipes posee propiedades biológicas. Por lo que, el objetivo del trabajo fue determinar la composición químico-proximal y fitoquímica de extractos de E. crassipes obtenidos por Maceración y Shoxlet con la finalidad evaluar su potencial bacteriostático. Los resultados del análisis químico-proximal indicaron que la fracción hoja presenta una alta concentración de proteína (32.67 ± 0.25 %) y holocelulosa (65.34 ± 0.06 %), mientras que, el análisis fitoquímico de las fracciones evaluadas (hoja (H), bulbo (b) y hoja+bulbo (H+B)), indica la presencia de flavonoides, fenoles, taninos y saponinas, principalmente. Siendo los extractos acuosos los que presentaron mayor concentración de compuestos fitoquímicos antimicrobianos. Asimismo, el extracto etanólico obtenido por Maceración de la fracción H+B (18.53 mm) y el extracto acuoso de la fracción H obtenido por Soxhlet (18.40 mm) presentaron mayor inhibición contra Staphylococcus aureus, mientras que el extracto etanólico y acuoso obtenido por el método Soxhlet (11.97, 11.93 mm, respectivamente) de la fracción H mostraron mayor inhibición contra Salmonella sp.

Citas

Adelakun, K. M., Kehinde, A. S., Amali, R. P., Ogundiwin, D. I. y Omotayo, O. L. 2016. Nutritional and phytochemical quality of some tropical aquatic plants. Poultry, Fisheries & Wildlife Sciences. 4: 1-4.

Anand, U., Jacobo-Herrera, N., Altemimi, A. y Lakhssassi, N. A. 2019. Comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 9: 258.

Anusiya, G., Bharathi, S., Mukesh Praveen, K. y Sainandhini, G. 2020. Extraction and molecular characterization of biological compounds from water hyacinth. Journal of Medicinal Plants. 8: 14-19.

AOAC. 2002. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington, D.C.

Azwanida, N.N. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal & Aromatical Plants. 4: 2167-0412.

Baral, B., Vaidya, G. S. y Bhattarai, N. 2011. Bioactivity and biochemical analysis of water hyacinth (Eichhornia crassipes). Botanica Orientalis: Journal of Plant Science. 8: 33-39.

Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiol. 94: 233-253.

Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W. y Cisneros‐Zevallos, L. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture. 86: 1481-1488.

Carson, C.F., Mee, B.J. y Riley, T.V. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents, and chemotherapy. 46: 1914-1920.

Das A., Ghosh P., Paul T., Ghosh U., Pati B. R. y Mondal K.C. 2016. Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech. 6: 1-9.

Fareed M.F, Haroon A.M. y Rabeh S.A. 2008. Antimicrobial activity of some macrophytes from lake Manzalah (Egypt). Pakistan Journal of Biological Sciences. 11: 2454-2463.

Gabriel, A.F., Igwemmar, N.C., Sadam, A.A. y Babalola, S.A. 2018. Comparative studies of the phytochemical and nutritional analysis of water hyacinths [Eichhornia crassipes] stem and leaf. Direct Research Journal of Health and Pharmacology. 6: 12-18.

Gbadamosi, I.T. y Kalejaye, A.O. 2017. Comparison of the antioxidant activity, phytochemical and nutritional contents of two antihypertensive ethnomedicinal plants. Ife Journal of Science. 19: 147-158.

Hamid, H.H. 2013. Photochemical, antioxidant and antibacterial activities of some extracts of water hyacinth (Eichhornia crassipes) leaves. International Journal of Advances in Pharmaceutical Research. 4: 1847-1851.

Joshi, M. y Kaur, S. 2013. In vitro evaluation of antimicrobial activity and phytochemical analysis of Calotropis procera, Eichhornia crassipes and Datura innoxia leaves. Asian Journal of Pharmaceutical and Clinical Research. 6: 25-28.

Kandukuri, V., Jakku, V.G., Aruri, S. y Singara, C. 2009. Biomolecular and phytochemical analyses of three aquatic angiosperms. African Journal of Microbiology Research. 3: 418-421.

Khalid, S., Shaheen, S., Hussain, K., Shahid, M.N. y Sarwar, S. 2020. Pharmacological analysis of obnoxious water weed: Eichhornia crassipes (mart.) Solms. Journal of Animal and Plant Sciences. 30: 1465-1475.

Khameneh, B., Iranshahy, M., Soheili, V. y Bazzaz, B. S. F. 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control. 8: 118.

Klyuchko, O. M. 2020. Aromatic hydrocarbons of arthropodae species: mechanisms of action on biological membranes and perspectives of biomedical application. Biotechnologia Acta. 13: 12-31.

Kriticos, D.J. y Brunel, S. 2016. Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. Plos One, 11: 6-18.

Kumazawa, S., Hamasaka, T. y Nakayama, T. 2004. Antioxidant activity of propolis of various geographic origins. Food chemistry. 84: 329-339.

Lara-Serrano J.S., Rutiaga-Quiñones O.M., López-Miranda J., Fileto-Pérez H.A., Pedraza-Bucio F.E., Rico-Cerda J.L. y Rutiaga-Quiñones J.G. 2016. Physicochemical characterization of water hyacinth (Eichhornia crassipes (Mart.) Solms). BioResources. 11: 7214-7223.

Lenora, L.M. y Senthilkumar, N. Insecticidal potential of aquatic alien weed, Eichhornia crassipes (Mart) Solms on Tobacco Caterpillar, Spodoptera litura (F.). 2017. Asian Journal of Plant Science and Research. 7: 1-6.

Liu, C.C., Zhao, G.L., Li, Y.N., Ding, Z.P., Liu, Q.G. y Li, J.L. 2017. Contribution of phenolics and flavonoids to anti-oxidat activity and of ethanol extract from Eichharnia crassipes. Advanced Materials Research. 156: 1372–1377.

Lozano, M., Tícona, E., Carrasco, C., Flores, Y. y Almanza, G.R. 2012. Cuantificación de saponinas en residuos de quinua real Chenopodium quinoa willd. Revista Boliviana de Química. 29: 131-138.

Meghashri, S., y Gopal, S. 2012. Leucasin - induced cytoplasmic membrane damage in Staphylococcus aureus. Journal of Phytomedicine. 4: 150-154.

Mohamed, W.A., Mansour, M.M. y Salem, M.Z. 2019. Lemna gibba and Eichhornia crassipes extracts: Clean alternatives for deacidification, antioxidation and fungicidal treatment of historical paper. Journal of Cleaner Production. 219: 846-855.

Mohan, A., Munusamy, C., Yee-Tan, C., Muthuvelu, S., Hashim, R., Su-Lin, C., Whong, M. K., Khairuddin, N. A., Podin, Y., Lau, P. S. T., Chun-Ern Ng, D. y Mong-Ooi-How, O. 2019. Invasive Salmonella infections among children in Bintulu, Sarawak, Malaysian Borneo: a 6-year retrospective review. B.M.C. Infectious disease. 19: 1-11.

Prabakaran, A.S. y Mani, N. 2017. Analysis of bioactive compounds and elemental analysis in Eichhoria crassipes leaf. World Journal of Pharmaceutical research. 6: 1083-1092.

Purbowatiningrum, R. S., Hapsari, M., Rafi’ah, F.H. y Haq, M.S. 2017. Synthesis of furfural from water hyacinth (Eichornia crassipes) In I.O.P. Conference Series: Materials Science and Engineering. 172: 1-6.

Reddy, A.M., Pratt, P.D. Hopper, J.V., Cibils-Stewart, X., Cabrera-Walsh, G. y Mac-Kay, F. 2019. Variation in cool temperature performance between populations of Neochetina eichhorniae (Coleoptera: Curculionidae) and implications for the biological control of water hyacinth, Eichhornia crassipes, in a temperate climate. Biological Control. 128: 85-93.

Rorong, J.A., Sudiarso, S., Prasetya, B., Polii-Mandang, J. y Suryanto, E. 2012. Phytochemical analysis of eceng gondok (Eichhornia crassipes solms) of agricultural waste as biosensitizer for ferri photoreduction. Journal of Agricultural Science. 34: 152-160.

Sarker S.D., Latif Z. y Gray A. 2006. Extraction of plant secondary metabolites. In: Natural Products Isolation. (2da Ed.) Humana Press Inc., pp. 1-26. Totowa, New Jersey.

Shamsa, F., Monsef, H., Ghamooshi, R. y Verdian-rizi, M. 2007. Spectrophotometric determination of total alkaloids in Peganum harmala L. using bromocresol green. Research Journal of Phytochemistry. 1: 79-82.

Shivaee, A., Rajabi, S., Farahani, H. E. y Fooladi, A. A. I. 2021. Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation. Toxicon. 197: 1-5.

Silva, N.C.C. y Fernandes, J.A. 2010. Biological properties of medicinal plants: a review of their antimicrobial activity. Journal of venomous Animals and Toxins including tropical diseases. 16: 402-413.

Singleton, V.L. y Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture. 16: 144-158.

Soares e Silva, L., Santos da Silva L., Brumano L., Stringheta P.C., de Oliveira-Pinto, M.A., MoreiraDias, L.O., de Sá Martins-Muller, C., Scio, E., Luis-Fabri, R., Castro H.C. y da Pena-Henriques do Amaral, M. 2012. Preparation of dry extract of Mikania glomerata sprengel (guaco) and determination of its coumarin levels by spectrophotometry and HPLC-UV. Molecules. 17: 10344-10354.

Su, W., Sun, Q., Xia, M., Wen, Z. y Yao, Z. 2018. The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] solms) and its challenges. Resources. 7: 46-54.

Surendraraj, A., Farvin, K. H. S. y Anandan, R. 2013. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitro antioxidant activity and phenolic composition. Journal of Aquatic Food Product Technology. 22: 11–26.

T 203 cm-09. 2015. Alpha-, Beta-, and Gamma-cellulose in the pulp. T.A.P.P.I. Standards

T 211 om. 1993. Ash in wood and pulp. T.A.P.P.I. Standards

T 212 cm-12. 2015. One percent sodium hydroxide solubility of wood and pulp. T.A.P.P.I. Standards

T 223 cm-84. 1984. Pentosans in wood and pulp. T.A.P.P.I. Standards

Tovar-Jiménez, X., Arana-Cuenca, A., Téllez-Jurado, A., Abreu-Corona, A. y Muro-Urista, C.R. 2012. Traditional methods for whey protein isolation and concentration: effects on nutritional properties and biological activity. Journal Mexican Chemistry Society. 56, 369-377.

Tovar-Jiménez, X., Favela-Torres, E., Volke-Sepúlveda, T.L., Escalante-Espinosa, E., Díaz-Ramírez, I.J., Córdova-López, J.A. y Téllez-Jurado, A. 2019. Influencia de la zona geográfica y fracción del lirio acuático en su composición química. Ingeniería agrícola y biosistemas, 11: 39-52.

Tyagi, T., Katara, A., Parashar, P. y Agarwal, M. 2017. An important ethanomedicinal invasive weed Eichhornia crassipes (Mart.) solms and Pistia stratiotes (L.): Phenolic profiling and antioxidant activity. Research Journal of Pharmacognosy and Phytochemistry. 10: 53-58.

Vasconcelos, N. G., Croda, J. y Simionatto, S. 2018. Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial pathogenesis. 120: 198-203.

Yan, S.H., Song, W. y Guo, J.Y. 2017. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems – a review. Critical reviews in biotechnology. 37: 218-228.

Yuan T.Q. y Sun R.C. 2010. Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Cereal straw as a resource for sustainable Biomaterials and Biofuels, Vol. 1, Elsevier, Oxford, UK

Descargas

Publicado

2022-05-31

Número

Sección

Artículos