Identificación de rizobacterias aisladas de Tagetes coronopifolia y Tagetes terniflora (Cempasúchitl) y evaluación de su capacidad inhibitoria in vitro de microorganismos fitopatógenos

Autores/as

  • Laura Sofía Castillo-Ortega
  • Yuridia Mercado-Flores
  • Alejandro Téllez-Jurado
  • Miguel Angel Anducho-Reyes Universidad Politécnica de Pachuca

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1736

Palabras clave:

rizobacterias, bacterias endofíticas, control biológico, plantas antagónicas

Resumen

El género Tagetes, es un grupo de plantas conocidas comúnmente como cempasúchil o flor del muerto, las cuales, son reconocidas principalmente por su uso en la industria alimentaria, horticultura ornamental, terapéutico herbolario y cultural. Tagetes coronopifolia y terniflora, son dos plantas de este género, empleadas en la rotación de cultivos para el control de nemátodos fitopatógenos. En este trabajo se realizó el aislamiento de 581 cepas a partir de muestras de suelo rizosférico, suelo adherido a la raíz y el interior de la raíz a los 30, 60, 90 y 120 días de crecimiento, en cultivos de invernadero. Del total de cepas de rizobacterias aisladas, 22 presentaron actividad antagónica a Fusarium sp. y 53 a Stenocarpella maydis, ambos. hongos patógenos de maíz, mientras que 37 cepas mostraron antagonismo a la bacteria fitopatógena Clavibacter michiganensis subsp michiganensis. De acuerdo con el porcentaje de inhibición de los patógenos en estudio, se seleccionaron 10 rizobacterias para su identificaron molecular utilizando un fragmento de aproximadamente 1484 pb del gen 16SrDNA. El análisis de similitud utilizando la herramienta BLAST del NCBI, arrojó como resultado que las rizobacterias pertenecen a los géneros Bacillus y Pseudomonas, géneros utilizados como agentes de biocontrol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Berg, G., Krechel, A., Ditz, M., Sikora, R.A., Ulrich, A. y Hallmann, J. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology. 51(2): 215–229.

Cawoy, H., Bettiol, W., Fickers, P. y Ongena, M. 2011. Bacillus‐based biological control of plant diseases. In Pesticides in the Modern World – Pesticides Use and Management. Stoytcheva, M. (ed.). Rijeka, Croatia: InTech, pp. 274–302.

Cheng, J., Jin, H., Zhang, J., Xu, Z., Yang, X., Liu, H., Xu, X., Min, D., Lu, D. y Qin, B. 2022. Effects of allelochemicals, soil enzyme activities, and environmental factors on rhizosphere soil microbial community of Stellera chamaejasme L. along a growth-coverage gradient. Microorganisms. 10(1): 158.

Cicevan, R., Al Hassan, M., Sestras, A.F., Prohens, J., Vicente, O., Sestras, R.E. y Boscaiu, M. 2016. Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). PeerJ. 4: e2133.

David, A.S., Thapa-Magar, K.B. y Afkhami, M.E. 2018. Microbial mitigation–exacerbation continuum: a novel framework for microbiome effects on hosts in the face of stress. Ecology. 99: 517-523.

Doornbos, R.F., van Loon, L.C. y Bakker, P.A.H.M. 2012. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development. 32: 227–243.

Fang CX, Yang LK, Chen WS, Li LL, Zhang PL, Li YZ, He HB, Lin WX. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. J Exp Bot. 2020;71(6):2127–41.

Gakuubi, M.M., Wagacha, J.M., Dossaji, S.F. y Wanzala, W. 2016. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. International Journal of Microbiology. 7352509.

García-Sánchez, F., López-Villafranco, M.E., Aguilar-Rodríguez, S. y Aguilar-Contreras, A. 2012. Etnobotánica y morfo-anatomía comparada de tres especies de Tagetes que se utilizan en Nicolás Romero, Estado de México. Botanical Sciences. 90(3): 221-232.

Garrido-Sanz, D., Arrebola, E., Martínez-Granero, F., García-Méndez, S., Muriel, C., Blanco-Romero, E., Martín, M., Rivilla, R. y Redondo-Nieto, M. 2017. Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based in group-specific markers. Frontiers in Microbiology. 8: 413.

Haldar, S., Sengupta, S. 2015. Plant-microbe cross-talk in the rhizosphere: Insight and Biotechnological Potential. The Open Microbiology Journal. 9: 1–7.

Handelsman, J. y Stabb, E.V. 1996. Biocontrol of soilborne plant pathogens. The Plant Cell. 8(10): 1855–1869.

Hernández, T., Leon, D., Rives, N., Diaz, A., Almaguer, M. y Acebo, Y. 2010. Identificación de aislamientos autóctonos de Pseudomonas fluorescentes con actividad antagónica de Curvularia spp. Protección Vegetal. 25(3):181-189.

Hoan, L.T. y Davide, R.G. 1979. Nematicidal properties of root ex-tracts of seventeen plant species on Meloidogyne incognita. Philippine Agriculturist. 62: 285-295.

Hooks, C.R.R., Wang, K.H., Ploeg, A., McSorley, R. 2010. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology. 46(3): 307-320.

Jeffers, D. 1995. Maize Pathology. In: CIMMYT 1997. Maize Research in 1995-96. Maize Program Special Report. México, D. F. pp. 39-41.

Kloepper, J.W. y Ryu, C.M. 2006. Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz B.J.E., Boyle C.J.C., Sieber T.N. (eds) Microbial Root Endophytes. Soil Biology. vol 9. Springer, Berlin, Heidelberg.

Lane, D.J. 1991. 16S/23S rRNA Sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115-175.

Loeffler, W., Tschen, S.M., Vamittanakoon, N., Kugler, M., Knorpp, E., Hsieh, T.F. y Wu, TG. 1986. Antifungal effects of Bacilysin and Fengymycin from Bacillus subtilis F-29-3. A comparison with activities of other Bacillus antibiotics. Journal of Phytopathology. 115: 204-213.

Loockerman, D.J., Turner, B.L. y Jansen, R.K. 2003. Phylogenetic relationships within the Tageteae (Asteraceae) based on nuclear ribosomal ITS and chloroplast ndhF gene sequences. Systematic Botany. 28 (1): 191-207.

López-López, E., Mejía, O., Mercado-Flores, Y., Téllez-Jurado, A. y Anducho-Reyes, M.A. 2017. Variation of the bacterial communities in the rhizosphere of three species of the genus Tagetes (marigold) over time. Applied Ecology and Environmental Research. 15(4):1327-1345.

Majeed, A., Muhammad, Z. y Ahmad, H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Reports. 37(12): 1599–1609.

Mares, D., Tosi, B., Poli, F., Andreotti, E. y Romagnoli, C. 2004. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum. Microbiological Research. 159(3): 295–304.

Micallef, S.A., Channer, S., Shiaris, M.P. y Colón-Carmona, A. 2009. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signaling & Behavior. 4(8): 777–780.

Miller, M.P. y Ahrens, J.F. 1969. Influence of growing marigolds, weeds, two cover crops and fumigation on sub-sequent populations of parasitic nematodes and plant growth. Plant Disease Reporter. 53: 642-646.

Petatán-Sagahón, I., Anducho-Reyes, M.A., Silva-Rojas, H.V., Arana-Cuenca, A., Tellez-Jurado, A., Cárdenas-Álvarez, I.O. y Mercado-Flores, Y. 2011. Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. International Journal of Molecular Sciences. 12(9): 5522–5537.

Philippot, L., Raaijmakers, J., Lemanceau, P. y Van der Putten, W.H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology. 11: 789–799 (2013).

Qu, T., Du, X., Peng, Y., Guo, W., Zhao, C. y Losapio, G. 2021. Invasive species allelopathy decreases plant growth and soil microbial activity. PloS one. 16(2): e0246685.

Reinoso, Y., Casadesús, L., García, A., Gutiérrez, J. y Álvarez, V. 2006. Aislamiento, selección e identificación de bacterias del género Bacillus antagonistas de Pectobacterium carotovorum. Fitosanidad. 10: 187-191.

Rodríguez-Mejía, M.L. 2013. Biogeografía y manejo integrado de Clavibacter michiguenses subsp. michiganenses en México. Revista Mexicana de Fitopatología, Vol.31 (Suplemento).

Rolón-Cárdenas, G. A., Arvizu-Gómez, J. L., Pacheco-Aguilar, J. R., Vázquez-Martínez, J. y Hernández-Morales, A. 2021. Cadmium-tolerant endophytic Pseudomonas rhodesiae strains isolated from Typha latifolia modify the root architecture of Arabidopsis thaliana Col-0 in presence and absence of Cd. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology]. 52(1): 349–361.

Salehi, B., Valussi, M., Morais-Braga, M., Carneiro, J., Leal, A., Coutinho, H., Vitalini, S., Kręgiel, D., Antolak, H., Sharifi-Rad, M., Silva, N., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S. y Sharifi-Rad, J. 2018. Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules (Basel, Switzerland). 23(11): 2847.

Siebers, M., Rohr, T., Ventura, M., Schütz, V., Thies, S., Kovacic, F., Jaeger, K. E., Berg, M., Dörmann, P. y Schulz, M. 2018. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PloS one. 13(7): e0200160.

Siddiqui, M.A. y Alam, M.M. 1987. Utilization of marigold plant wastes for the control of plant parasitic nematodes. Biological Wastes. 21:221–229.

Sturz, A. y Kimpinski, J. 2004. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant and Soil. 262: 241–249.

Topp, E., Millar, S., Bork, H. y Welsh, M. 1998. Effects of marigold (Tagetes sp.) roots on soil microorganisms. Biology and Fertility of Soils. 27: 149-154.

Utkhede, R. y Koch, C. 2004. Biological treatments to control bacterial canker of greenhouse tomatoes. BioControl. 49: 305-313.

von der Schulenburg, J.H.G., Hancock, J.M., Pagnamenta, A., Sloggett, J.J., Majerus, M.E.N. y Hurst, G.D.D. 2001. Extreme length and length variation in the first ribosomal internal transcribed spacer of ladybird beetles (Coleoptera: Coccinellidae). Molecular Biology and Evolution. 18:648–660.

Xiao, Z.X., Lu, S.G. y Xu, Z.H. 2019. Biochemistry of allelopathic plant residues in soil. Ekoloji. 28(107):2997–3006. Article No: e107336.

Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. y Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology. 91(2): 181–187.

Zhang, Q.X., Kong, X.W., Li, S.Y., Chen, X.J. y Chen, X.J. 2020. Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity. Australas. Plant Pathology. 49: 307–317.

Zuo, S., Li, X., Ma, Y., Yang, S. 2014. Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant Soil. 378: 49–58.

Descargas

Publicado

2022-10-18

Cómo citar

Castillo-Ortega, L. S. ., Mercado-Flores, Y. ., Téllez-Jurado, A. ., & Anducho-Reyes, M. A. (2022). Identificación de rizobacterias aisladas de Tagetes coronopifolia y Tagetes terniflora (Cempasúchitl) y evaluación de su capacidad inhibitoria in vitro de microorganismos fitopatógenos. Biotecnia, 24(3), 150–158. https://doi.org/10.18633/biotecnia.v24i3.1736

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.