Optimization of lipophilic compounds in tortillas from native pigmented maize obtained from flours by the lime cooking extrusion process

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1392

Palabras clave:

maíz nativo, extrusión cocción alcalina, optimización, función de deseabilidad, metodología de superficie de respuesta

Resumen

El proceso de cocción-alcalina por extrusión, representa una tecnología emergente para elaborar tortillas con ventajas de redución de enegía, agua, y no elimina efluentes al ambiente. Optimización de respuesta múltiple por la metodología de superficie de respuesta (MSR) se aplicó como herramienta para optimizar el proceso de cocción-alcalina por extrusión sobre maíz pigmentado nativo para obtener harinas para elaborar tortillas con compuestos lipofílicos altos. El efecto de temperatura de extrusión (TE, 65–135 ºC) y velocidad de tornillo (VT, 78–212 rpm) fueron investigadas. Las mejores tortillas extruidas de maíz azul se seleccionaron sobre las variables de respuesta: ácido linoleico (AL), ácido oleico (AO), campesterol (FC), estigmasterol (FS) y b-sitosterol (bFS), donde los modelos cuadráticos de predicción establecidos fueron adecuados y reproducibles dentro de la matriz especificada de factores de proceso. Empleando función de deseabilidad, condiciones óptimas de cocción-alcalina por extrusión para el desarrollo de tortillas de maíz azul nativo corresponden a TE (119 ° C), VT, (78 rpm) y deseabilidad global (D = 0.906). Los valores de las variables obtenidas de modelos predictivos, fueron comparadas con pruebas experimentales con estrecha concordancia entre ambos valores. Por lo tanto, MSR es recomendable para la optimización, particularmente en combinación con otros procedimientos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta-Estrada, B.A., Gutierrez-Uribe, J.A. and Serna-Saldivar, S.O. 2014. Bound phenolics in food, a review. Food Chemistry, 152(1):46-55. https://doi.org/10.1016/j.foodchem.2013.11.093
Barrera-Arellano, D., Badan-Ribeiro, A.P. and Serna-Saldivar, S.O. 2019. Corn Oil: Composition, Processing and Utilization. In Corn Chemistry and Technology (3rd ed., 593-613). ST Paul, MN: AACCI International. https://doi.org/10.1016/B978-0-12-811971-6.00021-8
Chávez-Santoscoy, R.A., Tovar, A.R., Serna-Saldívar, S.O., Torres, N. and Gutiérrez-Uribe, J.A. 2014. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes and Nutrition, 9(1):367. https://doi.org/10.1007/s12263-013-0367-1
Corrales-Bañuelos, A.B., Cuevas-Rodríguez, E.O., Gutiérrez-Uribe, J.A., Milán-Noris, E.M., Reyes-Moreno, C., Milán-Carrillo, J. and Mora-Rochín, S. 2016. Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. Journal of Cereal Science, 69:64-70. https://doi.org/10.1016/j.jcs.2016.02.009
Cuevas-Rodriguez, E.O., Reyes-Moreno, C., Eckhoff, S.R. and Milán-Carrillo, J. 2009. Nixtamalized instant flour from corn (Zea mays L.) meal: optimization of nixtamalization conditions. Cereal Chemistry, 86(1):7-11. https://doi.org/10.1094/CCHEM-86-1-0007
De Pilli, T., Derossi, A., Talja, R.A., Jouppila, K. and Severini, C. 2011. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Inne Food Science & Emer Tech. 12(4):610-616.
Derringer, G. and Suich, R. 1980. Simultaneous optimization of several response variables. Journal of Quality Technology, 12:214-219.
Escalante-Aburto, A., Ramírez-Wong, B., Torres-Chávez, P., López-Cervantes, J., Figueroa-Cárdenas, J., Barrón-Hoyos, J. and Gutiérrez-Dorado, R. 2014. Obtaining ready-to-eat blue corn expanded snacks with anthocyanins using an extrusion process and response surface methodology. Molecules 19(12):21066–21084. https://doi:10.3390/molecules191221066
Esche, R., Barnsteiner, A., Scholz, B. and Engel, K.H. 2012. Simultaneous analysis of free phytosterols/phytostanols and intact phytosteryl/phytostanyl fatty acid and phenolic acid esters in cereals. Journal of Agricultural and Food Chemistry, 60(21):5330-5339. https://doi.org/10.1021/jf300878h
Esche, R., Scholz, B. and Engel, K.H. 2013. Online LC-GC analysis of free sterols/stanols and intact steryl/stanyl esters in cereals. Journal of Agricultural and Food Chemistry, 61(46):10932-10939.
Gutierrez-Uribe, J.A., Rojas-García, C., García-Lara, S. and Serna-Saldívar, S.O. 2010. Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. Journal of Cereal Science, 52(3):410-416. https://doi.org/10.1016/j.jcs.2010.07.003
Harrington, E.C. 1965. The desirability function. Industrial Quality Control, 21:494-498.
Khuri, A.L. and Cornell, J.A. 1987. Response surface: Desings and analyses. Marcel Dekker Inc., New York
López-Martínez, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.H., Parkin, K.L. and Garcia, H.S. 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Science and Technology, 42(6):1187-1192.https://doi.org/10.1016/j.lwt.2008.10.010
Milán‐Carrillo, J., Gutiérrez‐Dorado, R., Perales‐Sánchez, J.X., Cuevas‐Rodríguez, E.O., Ramírez‐Wong, B. and Reyes‐Moreno, C. 2006. The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal of Food Science & Technology, 41(7):727-736. https://doi.org/10.1111/j.1365-2621.2005.00997.x
Mora-Rochín, S., Gaxiola-Cuevas, N., Gutiérrez-Uribe, J.A., Milán-Carrillo, J., Milán-Noris, E.M., Reyes-Moreno, C., Serna-Saldivar, S.O. and Cuevas-Rodríguez, E.O. 2016. Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. LWT- Food Science and Technology, 68:563-569. https://doi.org/10.1016/j.lwt.2016.01.009
Ortiz-Cruz, R.A., Ramírez-Wong, B., Ledesma-Osuna, A.I., Torres-chávez, P.I., Sánchez-Machado, D.I., Montaño-Leyva, B., López-Cervantes, J.and Gutiérrez-Dorado, R. 2020. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition, 75, 252–257. https://doi.org/10.1007/s11130-020-00810-6
Ramos-Enríquez, J.R., Ramírez-Wong, B., Robles-Sánchez, R.M., Robles-Zepeda, R.E., González-Aguilar, G.A. and Gutiérrez-Dorado, R. 2018. Effect of extrusion conditions and the optimization of phenolic compound content and antioxidant activity of wheat bran using response surface methodology. Plant Foods for Human Nutrition, 73(3): 228–234. https://doi:10.1007/s11130-018-0679-9
Reynoso-Camacho, R., Guerrero-Villanueva, G., Figueroa, J.D., Gallegos-Corona, M.A., Mendoza, S., Loarca-Piña, G. and Ramos-Gomez, M. 2015. Anticarcinogenic effect of corn tortilla against 1, 2-Dimethylhydrazine (DMH)-induced colon carcinogenesis in sprague–dawley rats. Plant Food for Human Nutrition, 70:146-152. https://doi.org/10.1007/s11130-015-0471-z
Rudzińska, M. and Przybylski, R. 2009. Products formed during thermo-oxidative degradation of phytosterols. Journal of the American Oil Chemists´ Society, 86(7):651-662.
Serna-Saldivar, S.O. and Chuck-Hernandez, C. 2019. Food uses of lime-cooked corn with emphasis in tortillas and snacks. In Corn, Chemistry and Technology (3rd ed., 469-500). ST Paul, MN: AACCI International. https://doi.org/10.1016/B978-0-12-811971-6.00017-6
Urias-Lugo, D.A., Heredia, J.D., Muy-Rangel, M.D., Valdez-Torres, J.B., Serna-Saldivar, S.O. and Gutiérrez-Uribe, J.A. 2015. Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), Liver (HepG2), Colon (Caco 2 and HT29) and prostate (PC3) cancer cells. Plant Food for Human Nutrition, 70(2):193-199. https://doi.org/10.1007/s11130-015-0479-4
Vera-Candioti, L., De Zan, M.M., Cámara, M.S. and Goicoechea, H.C. 2014. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124:123-138. https://doi:10.1016/j.talanta.2014.01.034

Publicado

2021-06-16

Cómo citar

Mora Rochin, S., Menchaca-Armenta, M., Milán-Noris, A. K., Gutiérrez-Uribe, J. A., Cueva-Rodríguez, E. O., Reyes-Moreno, C. ., & Milán-Carrillo, J. (2021). Optimization of lipophilic compounds in tortillas from native pigmented maize obtained from flours by the lime cooking extrusion process. Biotecnia, 23(2). https://doi.org/10.18633/biotecnia.v23i2.1392

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.