Relationship between nutrient status and density of Tetranychus urticae Koch in rose cut (Rosa hybrida)

Authors

  • AGUSTIN ROBLES BERMUDEZ UNIVERSIDAD AUTÓNOMA DE NAYARIT
  • Concepción Rodríguez-Maciel Programa de Entomología y Acarología. Colegio de Postgraduados, Campus Montecillo, Estado de México, México
  • Porfirio Juárez-López Universidad Autónoma del Estado de Morelos
  • Octavio Jhonathan Cambero Campos Universidad Autónoma de Nayarit

DOI:

https://doi.org/10.18633/biotecnia.v26.1878

Keywords:

Mites, mineral nutrition, integrated pest management

Abstract

The two-spotted mite, Tetranychus urticae Koch, is the key pest in rose cut. Preliminary observations show that plants with high density of two-spotted mite exhibit nutritional imbalance but there is not quantitative information about it. The objective was to determine the relation between two-spotted mite´s density and nutritional status of cut rose crop 'Polo'. In four samplings (60 plants) without two-spotted mite and (60 plants) with at least 60 mites per leaf (high infestation) were chosen infestad and healthy leaves, in both cases, foliar analyses were carried out to determine the micro and macro elements as well as the Nutritional Unbalanced Index (IDN). The plants infested with two-spotted mite showed a nutritional disequilibrium due to reduced foliar concentration of nitrogen, potassium, phosphorus, calcium, manganese and copper. The percentage reduction in the concentration of these elements fluctuated between 0.3 to 29 % compared against control. 

Downloads

Download data is not yet available.

References

Adesanya, A.W., Lavine, M.D., Moural, T.W., Lavine, L.C., Zhu, F. y Walsh. D. B. 2021. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. Journal of Pest Science, 94(3), 639-663. DOI: https://doi.org/10.1007/s10340-021-01342-x

Alcántar, G.G. y M. Sandoval-Villa M. 1999. Manual de análisis químico de tejido vegetal. Publicación Especial Sociedad Mexicana de la Ciencia del Suelo, Chapingo, México. 156 p.

Alvarado-Camarillo, D., Valdez-Aguilar, L.A., Alba-Romenous, K., Martínez-Amador, S. Y., Hernández-Pérez, A. 2018. Accumulation and remobilization of Calcium, Magnesium and Phosphorus in Rose plants Acumulación y removilización de Calcio, Magnesio y Fósforo en plantas de Rosal. Revista Bio Ciencias, 5(1):322-327.

Amtamann, A., Trouflard y S., Armengaud, P. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum 133:682-691. DOI: https://doi.org/10.1111/j.1399-3054.2008.01075.x

Bai, C., Reilly C.C. y Wood, B.W. 2006. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140:433-443. DOI: https://doi.org/10.1104/pp.105.072983

Bentz, J.A., Reeves, J., Barbosa, P., Francis, B. 1995. Nitrogen fertilizer effect on selection, acceptance, and suitability of Euphorbia pulcherrima (Euphorbiaceae) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae). Enviromental Entomology 24:40-45. DOI: https://doi.org/10.1093/ee/24.1.40

Beaufils, E.R. 1973. Diagnosis and recommendation integrated system (DRIS). Soil Science Bulletin 1. University of Natal. Pietermaritzburg. South Africa.

Bilal, H.H., Tahir, R., Adnan, M., Ali, S.M., Islam, H., Umer, M.S. y Iftikhar, M. 2020. ¿La aplicación foliar de macro y micronutrientes tiene algún impacto en la producción de rosas? Una revisión. Annals of Reviews and Research. 6 (1), 555677.

Bremmer, L.M. y Mulvaney C.S. 1982. Total nitrogen. p. 595-634. In: Miller R H, Keeney D R (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties ASA, S.S.A. Madison, Wisconsin, USA, 1692p.

Bush, J.W. y Larry, P.P. 1999. Mixture models of soybean growth and herbivore performance in response to nitrogen-sulfur-phosphorous nutrients interactions. Ecological Entomology 24: 132-145. DOI: https://doi.org/10.1046/j.1365-2311.1999.00185.x

Carrillo-Salazar, J.A., González-Camacho, J.M., San Juan-Martinez, E., Gonzalez-Hernandez y V. A. 2019. Quality assessment of potted petunia based on a probabilistic neural network classifier. Agrociencia (Montecillo), 53(6), 895-910.

Chacón-Hernández, J. C., Camacho-Aguilar, I., Cerna-Chavez, E., Ordaz-Silva, S., Ochoa-Fuentes, Y. M. y Landeros-Flores, J. 2018. Effects of Tetranychus urticae and Phytoseiulus persimilis (Acari: Tetranychidae: Phytoseiidae) on the chlorophyll of rosal plants (Rosa sp.). Agrociencia, 52(6), 895-909.

Chen, Y, Opit G.P., Jonas V.M., Williams, K.A., Nechols J.R., Margolies, D.C. 2007 Environmental factors affecting the life-tables of Tetranychus urticae (Acari: Tetranychidae) III. Host-plant nutrition. J. Econ. Entomol. 12:1821-1830.

Damghani, M., Asadi, M., y Khanamani, M. 2021. Effect of different fertilizer regimes on life table parameters of Tetranychus urticae (Acari: Tetranychidae) on resistant bean cultivar. Journal of Agricultural Science and Technology, 23(4), 853-863.

Damián-Nava, A., V. A. González-Hernández, P. Sánchez-García y M. Livera-Muñoz. 2006. Dinámica y diagnóstico nutrimental del guayabo en Iguala, Guerrero, México. Terra Latinoamericana. 24(1): 125-132.

Díaz-Arias, K. V., Rodríguez-Maciel, J.C., Lagunes-Tejeda, Á., Aguilar-Medel, S., Tejeda-Reyes, M. A. y Silva-Aguayo, G. 2019. Resistance to abamectin in field population of Tetranychus urticae Koch (Acari: Tetranychidae) associated with cut rose from state of Mexico, Mexico. Florida Entomologist, 102(2), 428-430. DOI: https://doi.org/10.1653/024.102.0222

Erhan, G.M. y Nedim A. 2006. Growth promoting of some ornamental plants by root treatment with specific fluorescent Pseudomonads. Journal of Biological Sciences. 6: 610-625. DOI: https://doi.org/10.3923/jbs.2006.610.615

Folegatti, M.V., Casarini, E. y Blanco, FF. 2001. Profundidades del agua de riego de invernadero en relación con las calidades de los tallos y brotes de rosas. Scientia Agrícola , 58 , 465-468.

García-Velasco, R., Mora-Herrera, M.E., Mejía-Carranza, J., Aguilar-Medel, S., y González-Millan, M.E. 2021. Fosfitos de potasio en el manejo de Peronospora sparsa Berkeley y calidad floral del cultivo de rosa cv. Samouraï®. Acta Agrícola y Pecuaria, 7(1). DOI: https://doi.org/10.30973/aap/2021.7.0071004

Golizadeh, A., Jafari-Behi, V., Razmjou, J., Naseri, B. y Hassanpour, M. 2017. Population growth parameters of rose aphid, Macrosiphum rosae (Hemiptera: Aphididae) on different rose cultivars. Neotropical entomology, 46(1), 100-106. DOI: https://doi.org/10.1007/s13744-016-0428-4

Harada, H., Takahashi, H., Matsuzaki, T. y Hagimori, M. 1996. Calcium chloride as a major component contributing to aphid resistance of Nicotiana benthamiana. J. Chem. Ecol. 22: 1579-1589. DOI: https://doi.org/10.1007/BF02272399

Hoffland, E., Dicke, M., Van Tintelen, W., Dijkman, H., y Van Beusichem, M. L. 2000. Nitrogen availability and defense of tomato against two-spotted spider mite. Journal of Chemical Ecology. 26(12): 2697-2711. DOI: https://doi.org/10.1023/A:1026477423988

Huerta, A.J., y Murphy, T.M. 1989. Efectos del pH extracelular sobre la salida de K+ inducida por UV de células de rosas cultivadas. Fisiología vegetal. 90 (2), 749-753.

Huguet, C. 1980. Effects of the supply of calcium on the composition and the susceptibility of golden delicious apples to physiological and pathological disorders. Acta Hort. 92: 93-98. DOI: https://doi.org/10.17660/ActaHortic.1980.92.10

Kallure, G.S., Kumari, A., Shinde, B.A. y Giri, A.P. 2022. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. Phytochemistry, 193, 113008. DOI: https://doi.org/10.1016/j.phytochem.2021.113008

Kant, M., Ament R., Sabelis, M.W., Haring, M.A. y Schuurink, R.C.S. 2004. Differential timing of spider mite induced direct and indirect defense in tomato plants. Plant Physiol. 135: 483-495. DOI: https://doi.org/10.1104/pp.103.038315

Kwon, O.H., Choi, H.G., Kim, S.J., Lee, Y.R., Jung, H.H., y Park, K.Y. 2022. Changes in Yield, Quality, and Morphology of Three Grafted Cut Roses Grown in a Greenhouse Year-Round. Horticulturae, 8(7), 655. DOI: https://doi.org/10.3390/horticulturae8070655

Landeros. J., Guevara, L.P., Badii, M.H., Flores, A.E. y Pámanes, A. 2004. Effect off different densities of the Two-spotted spider mite Tetranychus urticae on CO2 assimilation, transpiration, and stomatal behavior in rose leaves. Exp. Appl. Acarol. 32: 187-194. DOI: https://doi.org/10.1023/B:APPA.0000021788.07667.6b

Lara-Cortés, E., Osorio-Díaz, P., Jiménez-Aparicio, A., Bautista-Baños, S. 2013. Contenido nutricional, propiedades funcionales y conservación de flores comestibles: Revisión. Archivos latinoamericanos de nutrición, 63(3), 197-208.

Longjam, R., Huirongbam, K., Kamboj, S., Jakhar, A. S., y Singh, S. 2022. Post harvesting and value addition in rose. The Pharma Innovation Journal 2022; SP-11(6): 1820-1823

Martínez-Valenzuela, C., y Gómez-Arroyo, S. 2007. Riesgo genotóxico por exposición a plaguicidas en trabajadores agrícolas. Revista internacional de contaminación ambiental, 23(4), 185-200.

Marschner, P. 2012. Mineral nutrition of higher plants. Third edition. Elsevier Academic Press. San Diego, CA, USA. 651 p. https://www.sciencedirect.com/book/9780123849052/marschners-mineral-nutrition-of-higher-plants

Mills, H.A., Benton, J.J. 1996. Plant analyses Handbook II. MicroMacro Publishing Inc, 279 p.

Mithöfer, A., Boland, W. 2008. Recognition of herbivory associated molecular patterns. Plant Physiol. 146:825-831. DOI: https://doi.org/10.1104/pp.107.113118

Mukhammadiev, B.K., y Khasilava, N.A. 2020. Rоsa and integrated pest control measures. International Scientific and Technical Journal “Innovation Technical and Technology, 1(2): 33-36.

Nicholls, C. y Altieri, M. 2006. Manejo de la fertilidad de suelos e insectos plaga: armonizando la salud del suelo y la salud de las plantas en los agroecosistemas. Manejo Integrado de Plagas y Agroecología. 77: 30-35.

Norboo, T., Ahmad, H., Shankar, U., Ganai, S.A., Kumar, M., y Stanzin Landol, B.K. 2018. Screening for resistance in rose against red spider mite, Tetranychus urticae (Linn.). J Entomol. Zool. Studies, 6(3), 897-899.

Ortega-Arenas, L. D., Miranda-Aragón, D., Sandoval-Villa, M. 2006. Densidad de huevos y ninfas de mosca blanca Trialeurodes vaporariorum (WEST.) en Gerbera jamesonii H. Bolus. con diferentes regímenes de fertilización nitrogenada. Agrociencia 40: 363-371.

Otero, C.G. 2002. Ácaros plaga de cultivos ornamentales. p. 8-24. In: Bautista N, Alvarado J, Chavarín J, Sánchez H. (eds) Manejo Fitosanitario de Ornamentales. Colegio de Postgraduados, Instituto de Fitosanidad, Montecillo, Texcoco, México. 237 p.

Porcuna, J.L. 2007. Producción integrada: Una estrategia de tránsito hacia sistemas más sostenibles. Ecosistemas 16:1-8.

Ribeiro, M.G.P.D.M., Michereff Filho, M., Guedes, Í.M., Junqueira, A.M.R., y de Liz, R.S. 2012. Efeito da adubação química na infestação do ácaro rajado e na produção do morangueiro. Horticultura Brasileira, 30, 673-680. DOI: https://doi.org/10.1590/S0102-05362012000400018

Sandoval, C. y Lolas, M. 2008. Estado nutricional de las plantas y su incidencia en la expresión de enfermedades. p.141-167. In Hirzel, J. (ed) Diagnóstico nutricional y principios de fertilización en frutales y vides. Publicaciones INIA. Chillán. Chile, 295p.

Santamaria, M. E., Arnaiz, A., Rosa-Díaz, I., González-Melendi, P., Romero-Hernandez, G., Ojeda-Martínez, D. A., Díaz, I. 2020. Plant defenses against Tetranychus urticae: mind the gaps. Plants. 9(4): 464 DOI: https://doi.org/10.3390/plants9040464

Statistical Analysis System (SAS). 2009. SAS for Windows. Version 9.1. Cary, N. C. United States.

Schwachtje, J., Baldwin, T. 2008. Why does herbivore attack reconfigure primary metabolism? Plant Physiol. 146:845-851. DOI: https://doi.org/10.1104/pp.107.112490

SIAP. Servicio de Información Agroalimentaria y Pesquera. 2021. Disponible en: https://nube.siap.gob.mx/cierreagricola/ (Recuperado el 15 de julio del 2022).

Silva, A.G., Rodríguez, M. J.C., Figueroa, C.I. 2008. Fertilización y Artropodofauna asociada a las especies vegetales. p.171-191. In: Hirzel, J. (ed) Diagnóstico nutricional y principios de fertilización en frutales y vides. Publicaciones INIA. Chillán. Chile, 295p.

Souza, V., Ventura, M. U., Hoshino, A. T., Hata, F. T., Constantino, L. V. 2021. Development and population growth of the two-spotted spider mite (Tetranychus urticae Koch) on strawberry fertilized with different doses and sources of organic fertilizers. International Journal of Acarology, 47(6): 528-535 DOI: https://doi.org/10.1080/01647954.2021.1965655

Stumpf, N. y Nauen, R. 2002. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pest. Biochem. and Physiol. 72: 111-121. DOI: https://doi.org/10.1006/pest.2001.2583

Walworth, J.L., Sumner, M.E. 1987. The Diagnosis and Recommendation Integrated System (DRIS). In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4682-4_4 DOI: https://doi.org/10.1007/978-1-4612-4682-4_4

Wermelinger, B., Oertli, J.J. y Baumgärtner, J. 1991 Environmental factors affecting the life-tables of Tetranychus urticae (Acari: Tetranychidae) III. Host Plant Nutrition. Exp. Appl. Acarol. 12: 259-274. DOI: https://doi.org/10.1007/BF01193472

Zacarias-Guale, J.C. 2018. Evaluación de la productividad y calidad del cultivo de rosas (Rosa spp.) variedad Freedom bajo aplicaciones de biol, cantón cotacachi (Bachelor's thesis).

Zhi, J., Margolies, D.C., Nechols, J.R. y Boyer, J.E. 2006. Host-plant-mediated interaction between populations of a true omnivore and its herbivorous prey. Entomologia Experimentalis et Applicata. 121: 59-66. DOI: https://doi.org/10.1111/j.1570-8703.2006.00456.x

Published

2024-04-08

How to Cite

ROBLES BERMUDEZ, A., Rodríguez-Maciel, C., Juárez-López, P., & Cambero Campos, O. J. (2024). Relationship between nutrient status and density of Tetranychus urticae Koch in rose cut (Rosa hybrida). Biotecnia, 26, 175–180. https://doi.org/10.18633/biotecnia.v26.1878

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.