IDENTIFICACIÓN DE LAS PROTEÍNAS INTEGRALES DE MEMBRANA CONSIDERADAS FACTORES DE PATOGENICIDAD EN LA BACTERIA INTRACELULAR Candidatus Hepatobacter penaei MEDIANTE ANÁLISIS BIOINFORMÁTICO

Autores/as

  • Jesús Alberto Pérez-Acosta Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Blvd Luis Donaldo Colosio entre Reforma y Sahuaripa, Hermosillo, Sonora. 83000, México
  • Luis Rafael Martínez-Córdova Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Blvd Luis Donaldo Colosio entre Reforma y Sahuaripa, Hermosillo, Sonora. 83000, México
  • Teresa Gollas-Galván Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria Km 0.6. PO Box. 1735. Hermosillo, Sonora, 83000, México
  • José Ángel Huerta-Ocampo CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria Km 0.6. Hermosillo, Sonora, 83304, México
  • Luis Enrique Gutiérrez-Millán Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Blvd Luis Donaldo Colosio entre Reforma y Sahuaripa, Hermosillo, Sonora. 83000, México
  • Marco Antonio López-Torres Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Blvd Luis Donaldo Colosio entre Reforma y Sahuaripa, Hermosillo, Sonora. 83000, México
  • Juan Manuel Leyva Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria Km 0.6. PO Box. 1735. Hermosillo, Sonora, 83000, México
  • Marcel Martínez-Porchas Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria Km 0.6. PO Box. 1735. Hermosillo, Sonora, 83000, México

DOI:

https://doi.org/10.18633/biotecnia.v20i3.719

Palabras clave:

Candidatus Hepatobacter penaei, proteína, patogenicidad, OTR, GeneMark, Blast2GO

Resumen

Candidatus Hepatobacter penaei se clasifica como una bacteria intracelular, Gram negativa y pleomórfica. La enfermedad que causa en camarón de cultivo representa una importante amenaza para la actividad camaronícola, por lo que se requiere conocer su mecanismo de infección. El objetivo de este trabajo fue identificar mediante análisis bioinformático, las proteínas membranales de Candidatus Hepatobacter penaei homólogas de los factores de patogenicidad de organismos tipo rickettsia (OTR). Para ello se realizó la predicción de genes codificantes de proteínas, utilizando el servidor público GeneMark. Para la identificación de las proteínas integrales de membrana que son factores de patogenicidad en la cepa de Candidatus Hepatobacter penaei, se empleó el software Blast2GO. Los resultados obtenidos muestran 96 proteínas integrales de membrana, reconocidas en la literatura como factores de patogenicidad bacteriana, con valores promedio de identidad mayor de 90 %. La identificación de los componentes de virulencia de Candidatus Hepatobacter penaei representa información relevante para entender en profundidad su mecanismo de infección.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Basler, M., Pilhofer, M., Henderson, G.P., Jensen, G.J. y Mekalanos, J.J. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483:182-6.

Briñez, B., Aranguren, F. y Salazar, M. 2003. Fecal samples as DNA source for the diagnosis of necrotizing hepatopancreatitis (NHP) in Penaeus vannamei broodstock. Diseases of Aquatic Organisms. 55: 69-72.

Chan, Y. G., Cardwell, M. M., Hermanas, T. M., Uchiyama, T. y Martinez, J. J. 2009. Rickettsial outer‐membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c‐Cbl, clathrin and caveolin 2‐dependent manner. Cellular Microbiology. 11: 629-644.

Chang, Y., Bruni, R., Kloss, B., Assur, Z., Kloppmann, E., Rost, B., Hendrickson W. A. y Liu, Q. 2014. Structural basis for a pHsensitive

calcium leak across membranes. Science. 344: 1131-1135.

Condry, D.L. y Nilles, M.L. 2016. Identification of the Targets of Type III Secretion System Inhibitors. Methods in Molecular Biology. 1531: 203-211.

Conesa, S.G. y García, G.J. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21: 674-3676.

Desvaux, M., Hébraud, M., Talon, R. y Henderson I.R. 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends in Microbiology. 17: 139-145.

Gollas-Galván, T., Avila-Villa, L.A., Martínez-Porchas, M. y Hernandez-Lopez, J. 2013. Rickettsia-like organisms from cultured aquatic organisms, with emphasis on necrotizing hepatopancreatitis bacterium affecting penaeid shrimp: an overview on an emergent concern. Reviews in Aquaculture5: 1-14.

Goffeau, A., de Hertogh, B. y Baret, P.V. 2013. ABC Transporters. In Lane W.J, Lennarz M.D. Encyclopedia of Biological Chemistry (Second ed.). London: Academic Press. ISBN 978-0-12- 378631-9.

Hospenthal, M.K., Costa, T.R. y Waksman, G. 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nature Reviews in Microbiology. 15: 365-379.

Junge, W. y Nelson, N. 2015. ATP synthase. Annual Review of Biochemistry. 84: 631-57.

Kapitein, N., Bönemann, G., Pietrosiuk, A., Seyffer, F., Hausser, I., Locker, J.K. y Mogk, A. 2013. ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Molecular Microbiology. 87: 1013-1028.

Kokaska, A.M. 2015. Assessing the Role of Fic (Filamentation Induced by cAMP) Proteins in E. coli. The Journal of Purdue Undergraduate Research. 5: Article 24.

Kuhn, A. y Kiefer, D. 2017. Membrane protein insertase YidC in bacteria and archaea. Molecular Microbiology. 103: 590-594.

Leyva, J. M., Martínez-Porchas, M., Hernández-López, J., Vargas- Albores F. y Gollas-Galván. 2018. Identifying the causal agent of Necrotizing Hepatopancreatitis in shrimp: multilocus sequence analysis (MLSA) approach. Aquaculture Research. 1–8. DOI: 10.1111/are.13633.

Lightner D.V. 1996. A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. World Aquaculture Society. Baton Rouge, USA.

Liu, Y., An, H., Zhang, J., Zhou, H., Ren, F. y Hao, Y. 2014. Functional role of tlyC1 encoding a hemolysin-like protein from Bifidobacterium longum BBMN68 in bile tolerance. FEMS Microbiology. 360: 167–173.

Ludwig, A., Tengel, C., Bauer, S., Bubert, A., Benz, R., Mollenkopf, H.J. y Goebel W. 1995. SlyA, a regulatory protein from Salmonella typhimurium, induces a haemolytic and poreforming protein in Escherichia coli. Molecular and General Genetics. 249: 474-486.

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Geer, L.Y. y Bryant, S.H. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research. 45: D200-D203.

Metzger, L.E. y Raetz, C.R. 2009. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry. 48: 11559–11571.

Mura, A., Fadda, D., Perez, A.J., Danforth, M.L., Musu, D., Rico, A.I., Krupka, M., Denapaite, D., Tsui, H.-C.T., Winkler, M.E., Branny, P., Vicente, M., Margolin, W. y Massidda O. 2017. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. Journal of Bacteriology. 199: e00608-16.

Murakami, S., Nakashima, R., Yamashita, E. y Yamaguchi A. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 419: 587-593.

Nunan, L.M., Pantoja, C.R., Gomez-Jimenez, S. y Lightner, D.V. 2013. “Candidatus Hepatobacter penaei,” an Intracellular Pathogenic Enteric Bacterium in the Hepatopancreas of the Marine Shrimp Penaeus vannamei (Crustacea: Decapoda). Applied and Environmental Microbiology. 79: 1407-1409.

Nguyen, V., Karunakaran, E., Collins, G. y Biggs, C.A. 2016. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material. Colloids Surf B Biointerfaces. 143: 518-525.

Osorio, A., Camarena, L., Cevallos, M.A. y Poggio, S. 2017. A new essential cell division protein in Caulobacter crescentus. Journal of Bacteriology. 199: e00811-16.

Pérez-Acosta, J., Martínez-Porchas, M., Gollas-Galván, T., Martínez-Córdova, L. R., Gutiérrez-Millán, L.E. y López-Torres, M. 2017. Transmembrane proteins rickettsia-like organisms (RLO) in aquatic animals: Adhesion, invasion and infection factors. Revista de Biología Marina y Oceanografía. 52: 19-32.

Pastoret, S., Fraipont, C., den Blaauwen, T., Wolf, B., Aarsman, M.E., Piette, A., Thomas, A., Brasseur, R. y Nguyen-Distèche, M. 2004. Functional analysis of the cell division protein FtsW of Escherichia coli. Journal of Bacteriology. 186: 8370-8379.

Peabody, C.R., Chung, Y.J., Yen, M.R., Vidal-Ingigliardi, D., Pugsley, A.P. y Saier, M.H. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology. 149: 3051–3072.

Quistgaard, E.M., Löw, C., Guettou, F. y Nordlund, P. 2016. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nature Reviews Molecular Cell Biology. 17: 123–132.

Ren, W., Liu, G., Yin, J., Tan, B., Wu, G., Bazer, F.W., Peng, Y. y Yin, Y. 2017. Amino-acid transporters in T-cell activation and differentiation. Cell Death and Disease. 8: e2655.

Su, L., Chen, S., Yi, L., Woodard, R.W., Chen J. y Wu J. 2012. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3). Microbial Cell Factories. 11: 8.

ter Beek, J., Guskov, A. y Slotboom, D.J. 2014. Structural diversity of ABC transporters. The Journal of General Physiology. 143: 419–35.

Terashima, H., Koike, M., Kojima, S. y Homma, M. 2010. The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor. Journal of Bacteriology. 192: 5609-5615.

Thomas, S., Holland, I.B. y Schmitt, L. 2014. The Type 1 secretion pathway - the hemolysin system and beyond. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1843:1629-1641.

Tian, L., Song, T., He, R., Zeng, Y., Xie, W., Wu, Q., Wang, S., Zhou, X. y Zhang Y. 2017. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci. BMC Genomics. 18: 330.

Tsirigotaki, A., De Geyter, J., Šoštaric´ N., Economou, A. y Karamanou, S. 2016. Protein export through the bacterial Sec pathway. Nature Reviews in Microbiology. 15: 21-36.

Vit, O. y Petrak, J. 2017. Integral membrane proteins in proteomics. How to break open the black box?. Journal of Proteomics. 153: 8-20.

Wallden, K., Rivera-Calzada, A. y Waksman, G. 2010. Type IV secretion systems: versatility and diversity in function. Cellular Microbiology. 12: 1203-1212.

Wang, Z. y Wu, M. 2014. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One. 9: e110685-e110685.

Yang, A., Narechania, A. y Kim, E. 2016. Rickettsial endosymbiont in the ‘earlydiverging’ streptophyte green alga Mesostigma viride. Journal of Phycology 52: 219-229.

Descargas

Publicado

2018-09-07

Cómo citar

Pérez-Acosta, J. A., Martínez-Córdova, L. R., Gollas-Galván, T., Huerta-Ocampo, J. Ángel, Gutiérrez-Millán, L. E., López-Torres, M. A., … Martínez-Porchas, M. (2018). IDENTIFICACIÓN DE LAS PROTEÍNAS INTEGRALES DE MEMBRANA CONSIDERADAS FACTORES DE PATOGENICIDAD EN LA BACTERIA INTRACELULAR Candidatus Hepatobacter penaei MEDIANTE ANÁLISIS BIOINFORMÁTICO. Biotecnia, 20(3), 117–126. https://doi.org/10.18633/biotecnia.v20i3.719

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.