Biological effectiveness of extracts of Agave striata and Fouquieria splendens against Clavibacter michiganensis subp. michiganensis.

Authors

  • Jesús Eduardo Ramírez Méndez Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico. https://orcid.org/0000-0001-7044-3972
  • Francisco Daniel Hernández Castillo Universidad Autónoma Agraria Antonio Narro
  • Marco Antonio Tucuch Pérez Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico. https://orcid.org/0000-0002-6978-8145
  • Isaac Irving Camacho Aguilar Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico. https://orcid.org/0000-0002-5929-1506
  • Roberto Arredondo Valdés Autonomous University of Coahuila Faculty of Chemical Sciences Department of Nanobiosciences. Saltillo, Coahuila, Mexico. Ing. J.Cardenas Valdez S/N, Col. República, CP. 25280. Saltillo, Coahuila, Mexico. https://orcid.org/0000-0003-4093-0707
  • José Ángel Villarreal Quintanilla Antonio Narro Agrarian Autonomous University. Department of Botany. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico.

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1751

Keywords:

Clavibacter michiganensis Subsp. michiganensis, tomato, methanolic extracts, biological effectiveness.

Abstract

Bacterial canker is one of the tomatoes (Solanum lycopersicum) diseases caused by the bacterium Clavibacter michiganensis subsp. michiganensis (Cmm). In this study, Cmm was identified by end-point PCR using the primers CMM5F and CMM6R. The efficacy of methanolic extracts of Agave striata and Fouquieria splendens on Cmm in vitro under greenhouse conditions was evaluated, as well as information about the composition of phytochemicals present in plants. The in vitro assay was performed using the plate microdilution technique from 3.9 mg/L to 1000 mg/L, the Ci50 and Ci90 of each extract was determined. In the greenhouse experiment, the effect of the extracts and an organic product "Biobacter" against Cmm was evaluated on incidence, severity, and morphometric parameters. The in vitro results indicated that the extracts of F. splendens and A. striata showed inhibition on the phytopathogen. The greenhouse trial showed that the incidence, severity and morphometric parameters were lower with F. splendens extract, subsequently, with Biobacter product.

Downloads

Download data is not yet available.

Author Biographies

Jesús Eduardo Ramírez Méndez, Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico.

Biomonitoring of heavy metals in tree vegetation in the city of Saltillo.

Marco Antonio Tucuch Pérez, Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico.

Biological Efficacy of Trichoderma spp. and Bacillus spp. in the Management of Plant Diseases.

Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method.

 

Isaac Irving Camacho Aguilar, Antonio Narro Agrarian Autonomous University. Department of Parasitology. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico.

Hosts and Vectors of Xylella fastidiosa in Vineyards of Parras, Coahuila, Mexico.

Roberto Arredondo Valdés, Autonomous University of Coahuila Faculty of Chemical Sciences Department of Nanobiosciences. Saltillo, Coahuila, Mexico. Ing. J.Cardenas Valdez S/N, Col. República, CP. 25280. Saltillo, Coahuila, Mexico.

Phytochemical Characterization of Phoradendron bollanum and Viscum album subs. austriacum as Mexican Mistletoe Plants with Antimicrobial Activity.

Natural Food Products and Waste Recovery.

A review of nano and micro-encapsulated phytochemical compounds for disease management in agriculture

Biological Efficacy of Trichoderma spp. and Bacillus spp. in the Management of Plant Diseases

Ninhydrin test comparison for amino group quantifying on nanoparticles with potential application in wastewater

Nanosystems of plant-based pigments and its relationship with oxidative stress.

Effect of Magnolia tamaulipana extract on egg laying and food intake of Tetranychus urticae (Acari: Tetranychidae).

Entomopathogenic Fungi as Biological Control Agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under Greenhouse Conditions

José Ángel Villarreal Quintanilla, Antonio Narro Agrarian Autonomous University. Department of Botany. Antonio Narro Road 1923, Buenavista. ZIP. 25315. Saltillo, Coahuila, Mexico.

A new section of Astragalus (Fabaceae: Galegeae) from Mexico.

Plants used as medicinal in Güémez, Tamaulipas, north-eastern Mexico.

Composition, structure and richness of vascular plants of the xeric scrub in northern Coahuila, Mexico.

Two taxonomic rank changes in Pseudognaphalium (Gnaphalieae, Asteraceae) from Mexico.

Current situation of the vegetation of the Sierra de Zapalinamé, Coahuila, Mexico.

The identity of Senegalia saltilloensis (Fabaceae)

References

Agrios, G. N. 2005. Plant pathology 5th Edition: Elsevier Academic Press. Burlington, Ma. USA, 922 p.

Almaraz-Abarca, N., González-Elizondo, M., Campos, M., Ávila-Sevilla, Z. E., Delgado Alvarado, E. A., Ávila-Reyes, J. A. 2013. Variability of the foliar felon profiles of the Agave victoriae-reginae complex (Agavaceae).BotanicalSciences.91 (3):295-306.

Alvarez, A. M., Kaneshiro, W. S., and Vine, B. G. 2004. Diversity of Clavibacter michiganensis Subsp. michiganensis populations in tomato seed: What is the significance. Acta Hortic. (ISHS) 695:205-214.DOI: 10.17660/ActaHortic.2005.695.23.

Andrade-Bustamante, G., García-López, A. M., Cervantes-Díaz, L., Aíl-Catzim, C. E., Borboa-Flores, J., & Rueda-Puente, E. O. 2017. Estudio del potencial biocontrolador de las plantas autóctonas de la zona árida del noroeste de México: control de fitopatógenos. Revista de la Facultad de Ciencias Agrarias UNCuyo, 49(1), 127-142.

Arie, T., Takahashi, H., Kodama, M., & Teraoka, T. 2007. Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 24(1), 135-147.

Arredondo-Valdés, R., Chacón-Hernández, J. C., Reyes-Zepeda, F., Hernández-Castillo, F. D., Anguiano-Cabello, J. C. et al. (2020). In vitro antibacterial activity of Magnolia tamaulipana against tomato phytopathogenic bacteria. Plant Protection Science, 56(4), 268–274. DOI: 10.17221/13/2020-PPS.

Arredondo-Valdés, R., Hernández-Castillo, F. D., Rocandio-Rodríguez, M., Anguiano-Cabello, J.C.; Rosas-Mejía, M., Vanoye-Eligio, V., Ordaz-Silva, S., López-Sánchez, I.V., Carrazcvo-Peña, L. D., Chacón-Hernández, J.C. 2021. In vitro Antibacterial Activity of Moringa oleifera Ethanolic Extract against Tomato Phytopathogenic Bacteria. Phyton, 90(3), 895.

Ávalos, G. A., Pérez-Urria, C. E. 2009. Serie Fisiología Vegetal. Reduca Biología 2 (3): 119-145.

Ávila Sevilla, Z. E. 2010. Caracterización molecular y química de Agave victoriae-reginae T. Moorem (Agavacea) (Doctoral dissertation). https://repositoriodigital.ipn.mx/bitstream/123456789/13038/1/tesiszeilaavila.pdf.

Balestra, G. M., Heydari, A., Ceccarelli, D., Ovidi, E., and Quattrucci, A. 2009. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot. 28:807-811. DOI: 10.1016/j.cropro.2009.06.004.

Bahaman, A. H., Wahab, R. A., Abdul Hamid, A. A., Abd Halim, K. B., & Kaya, Y. 2021. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. Journal of Biomolecular Structure and Dynamics, 39(7), 2628-2641.DOI: 10.1080/07391102.2020.1751713.

Basim, H., Yegen, O., & Zeller, W. 2000. Antibacterial effect of essential oil of Thymbra spicata L. var. spicata on some plant pathogenic bacteria/Die antibakterielle Wirkung des ätherischen Öls von Thymbra spicata L. var. spicata auf phytopathogene Bakterien. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 279-284.

Bate-Smith E. C. 1964. Chemistry and taxonomy of Fouquieria splendens Engelm: A new member of the asperuloside group. Phytochemistry. 3(5):623–625.

Bi Y., Liu X. X., Zhang H.Y., Yang X., Liu Z.Y., Lu J., Lewis P. J., Wang Ch. Z., Xu J. Y., Meng Q. G., Ma K., and Yuan Ch. S. 2017. Synthesis and antibacterial evaluation of novel 3-substituted ocotillol-type derivatives as leads. Molecules. 22(4):1–10. DOI: 10.3390/molecules22040590.

Calleros, G. V. 2013. Manejo y Control de las Enfermedades Bacterianas en Productos Agrícolas. XL Congreso Nacional y XV Congreso Internacional de la Sociedad Mexicana de Fitopatología. Revista Mexicana de Fitopatología, Vol. 31.S74-S75.

Camacho-Campos, C., Pérez-Hernández, Y., Valdivia-Ávila, A., Rubio-Fontanills, Y., & Fuentes-Alfonso, L. 2020. Evaluación fitoquímica, antibacteriana y molusquicida de extractos de hojas de Agave spp. Revista Cubana de Química, 32(3), 390-405.

Cervantes-Tenorio De Reyna, R. M., & Reyna-Pizán, T. N. 2019. Identificación fitoquímica y aislamiento de microorganismos endófitos de Agave americana.

Chigodi, M. O, Samoei, D. K. and Muthangya, M. 2013. Phytochemical screening of Agave sisalana Perrinele aves (waste). International Journal of Applied Biology and Pharmaceutical Technology. 4(4): 200-204.

Davis, M. J. & Gillaspie, A. G., JrVidaver, A. K. & Harris, R. W. 1984. Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli Subsp. xyli sp. nov, subsp. nov. and Clavibacter xyli Subsp. cynodontis Subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int J Syst Bacteriol 34, 107–117.

De León, L., Sivero, F., López, M., & Rodríguez, A. 2011. Clavibacter michiganensis Subsp. michiganensis, a seed born tomato pathogen: Healthy seeds are still the goal. Plant Diseases, 95(11), 1328-1339.

Delgado-Alvarado, E. A., Ávila-Reyes, J. A., Torres-Ricario, R., Naranjo-Jiménez, N., Chaidez-Ayala, A. I., & Almaraz-Abarca, N. 2021. Caracterización fitoquímica de Agave shrevei Gentry. e-CUCBA, (16), 56-59.

Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue; Focus 12 –13-15.

Dreier, J., Bermpohl, A. and Eichenlaub, R. 1995. Southern hybridization and PCR for specific detection phytopathogenic Clavibacter michiganensis Subsp. michiganensis. Phytopathology. 85:462- 468.

EFSA (2014). Scientific opinion on the pest categorisation of Clavibacter michiganensis Subsp. michiganensis (Smith) Davis et al. EFSA Journal, 12(6), 1-26.

Fatmi, M., and Schaad, N. W. 2002. Survival of Clavibacter michiganensis Subsp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol. 51:149-154.

FAO. 2020. FOASTAT. [online] Available at: http://www.fao.org/foastat/es/#home/.

FAOSTAT. 2020. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Estadísticas. http://www.fao.org/faostat/es/#home.

Fernández, A. L. 2005. “Fitoquímica del Agave Salmiana” (tesis profesional), Cholula Puebla.

FIRA. 2016. Panorama Agroalimentario: Tomate rojo. Panor. Aliment. 35.

Gartemann, K. H., Kirchner, O., Engemann, J., Gra¨fen, I., Eichenlaub, R. & Burger, A. 2003. Clavibacter michiganensis Subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 106, 179–191.

Gartemann, K.-H., Abt, B., Bekel, T., Burger, A., Engemann, J., Flügel, M., Gaigalat, L., Goesmann, A., Gräfen, I., Kalinowski, J., Kaup, O., et al. 2008. The genome sequence of the tomatopathogenic Actinomycete C. michiganensis Subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. Journal of Bacteriology 190:2138-2149.

Hadas R,G. Kritsman, Klietman F, Gefen T, Manulis S. 2014. Comparison of extraction procedures and determination of the detection threshold for Clavibacter michiganensis Subsp. michiganensis in tomato seeds. Plant pathol. 54: 643-649.

Hegnauer R. 1989. Chemotaxonomie Der Pflanzen. In an overview of the distribution and the systematic importance of plant substances.

Jasso de Rodríguez D, Trejo-González FA, Rodríguez-García R, Díaz-Jimenez MLV, Sáenz-Galindo A, Hernández-Castillo FD, Villarreal-Quintanilla JA, Peña-Ramos FM. 2015. Antifungal activity in vitro of Rhusmuelleri against Fusarium oxysporum f. sp. lycopersici. Industrial Crops and Products 75: 150-158.

Kawaguchi, A., Tanina, K., Inoue, K. 2010. Molecular typing and spread of Clavibacter michiganensis subsp. michiganensis in greenhouses in Japan. Plant Pathology. 59, 76–83.

Koike, S. T., Gladders, P., & Paulos, A. O. 2007. Vegetables Diseases. London, U.K: Manson Publishing.

Krishnaveni, V. 2017. Investigation of phytochemical and anti-bacterial activity on Agave americana methanolic extract for medical applications. International Journal of Pharma and Bio Sciences, 8 (3), 500-505. ISSN: 0975-6299.

López, M L. M. 2016. Manual técnico del cultivo del tomate (Solanum lycopersicum). San José, Costa Rica: INTA (Instituto Nacional de Innovacion y Transferencia de Tecnología Agropecuaria). https://www.mag.go.cr/bibliotecavirtual/F01-10921.pdf.

López-Romero, J. C., Ayala-Zavala, J. F., Peña-Ramos, E. A., Hernández, J., & González-Ríos, H. 2018. Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. Journal of food science and technology, 55(11), 4413-4423.

Marker, R. E y López, J. 1947. Sapogeninas esteroides. Nº 162. Kappogenina y Furcogenina. Revista de la Sociedad Química Estadounidense , 69 (10), 2380-2383.

Milijasevic, S., Todorovic, B., Potocnik, I., Rekanovic, E., & Stepanovic, M. 2009. Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis Subsp. michiganensis in greenhouse tomato seedlings. Pesticide and Phytomedicine, 24, 19-27.

Mohd-Nadzir, M. M., Vieira-Lelis, F. M., Thapa, B., Ali, A., Visser, R. G. F., van Heusden, A. W., van der Wolf, J. M. 2019. Development of an in vitro protocol to screen Clavibacter michiganensis Subsp. michiganensis pathogenicity in different Solanum species. Plant pathology, 68(1), 42-48.

Monreal-García H. Almaraz-Abarca N., Ávila-Reyes J., Torres-Ricario R., González-Elizondo S., Herrera-Arrieta Y., and Gutiérrez-Velázquez M. V. 2019. Phytochemical variation among populations of Fouquieria splendens (Fouquieriaceae). Botanical Science. 97(3):398–412.

Nandi, M., MacDonald, J., Liu, P., Weselowski, B., Yuan, Z. C. 2018. Clavibacter michiganensis Ssp. michiganensis: cancro bacteriano del tomate, interacciones moleculares y manejo de enfermedades. Patología de las plantas moleculares.

Pérez-Pérez, J. U., Guerra-Ramírez, D., Reyes-Trejo, B., Cuevas-Sánchez, J. A., & Guerra-Ramírez, P. 2020. Actividad antimicrobiana in vitro de extractos de Jatropha dioica Seseé contra bacterias fitopatógenas de tomate. Polibotánica, (49), 125-133.

Pokhilo N. D., Uvarova N. I. 1988. Isoprenoids of various species of the genus Betula. Chemistry of Natural Compounds. 24(3):273–285.

Rojas Elizalde, J. H. 2017. Identificación y evaluación de las propiedades antioxidantes y antimicrobianas de los compuestos extraídos de seis morfotipos de Agave durangensis (Doctoral dissertation). Tesis de Maestria. Victoria de Dgo., Durango. IPN. https://www.repositoriodigital.ipn.mx/bitstream/123456789/24076/1/TESIS-7JUNIO2017-ORIGINAL%20%282%29jhon.pdf.

Rodríguez-Garza, R. G. 2010. Tamizaje fitoquímico y actividad biológica de Fouquieria splendens (Engelmann), Ariocarpus retusus (Scheidweiler) y Ariocarpus kotschoubeyanus (Lemaire) (Doctoral dissertation). Universidad Autónoma De Nuevo León, México.

Rosero Ortiz, J. N. 2021. Revisión actualizada sobre las actividades farmacológicas y aplicaciones de los taninos. [Trabajo de Titulación modalidad Artículo de revisión previo a la obtención del título de Químico Farmacéutico]. UCE.

Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M. N., Ismail, S. and Mansor, S. M. 2009. Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Tropical Biomedicine 26(3), 274-279.

Sarwar, M. 2015. Biopesticides: an effective and environmental friendly insect-pests inhibitor line of action. International Journal of Engineering and Advanced Research Technology, 1(2), 10-15.

Scarpari, M., Reverberi, M., Parroni, A., Scala, V., Fanelli, C., Pietricola, C., Zjalic, S., Maresca, V., Tafuri, A., Ricciardi, M. R., et al. 2017. Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PloS one, 12(8), e0171412. DOI: 10.1371/journal.pone.0171412.

Schaad, N. W., Jones, J. B., and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3th. Revista Mexicana de fitopatología/ 343 ed. APS Press. St. Paul, Minnesota, USA. 373 p.

Sen Y., Aysan Y., Mirik M., Ozdemir D., Meijer-Dekens F., van der Wolf J. M., Visser R. G. F., van Heusden S. 2018. Genetic characterization of Clavibacter michiganensis Subsp. michiganensis population in Turkey. Plant Dis 102:300–308.

Sepúlveda-Jiménez, G., Porta-Ducoing, H., Rocha-Sosa, M. 2003. La participación de metabolitos secundarios en la defensa de plantas. Revisa mexicana de Fitopatología. 21(3): 354-363.

Simonetti, G., Pucci, N., Brasili, E., Valletta, A., Sammarco, I., Carnevale, E., Pasqua G. & Loreti, S. 2020. In vitro antimicrobial activity of plant extracts against Pseudomonas syringae pv. actinidiae causal agent of bacterial canker in kiwifruit. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(1), 100-106.DOI: 10.1080/11263504.2019.1699194.

Takhtajan A. (Ed.) 2009. Class Magnoliopsida (Dicotyledons). Flowering Plants. Springer. 7–588.

Tíreng-Karut S., Horuz S. y Aysan Y. 2019. Domates bakteriyel kanser ve solgunluk hastalığı etmeni Clavibacter michiganensis Subsp. michiganensis’ in tohumda aranması ve tohum uygulamalarının patojen gelişimine etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 16(3), 284-296. DOI: 10.33462/jotaf.526167.

Tucuch-Pérez, M. A., Arredondo-Valdés, R., & Hernández-Castillo, F. D. 2020. Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method. Nova scientia, 12(25).

Usman, H., Abdulrahman F. I. and Usman A. 2009. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Trad., 6(3), 289-295.DOI: 10.4314/ajtcam.v6i3.57178.

Valdés, R. A., Castillo, F. D. H., Cabello, J. C. A., Fuentes, Y. M. O., Morales, G. G., Cantú, D. J., & Aguilar, C. N. 2017. Review of antibacterial activity of plant extracts and growth-promoting microorganism (GPM) against phytopathogenic bacterial tomato crop. European Journal of Biotechnology and Genetic Engineering Vol, 4(1).

Valdivia, A. L., Fontanills, Y. R., Álvarez, L. M. H., Rabelo, J. J., Hernández, Y. P., & Tundidor, Y. P. 2018. Propiedades fitoquímicas y antibacterianas de los extractos de las hojas de Agave fourcroydes Lem.(henequén). Revista Cubana de Plantas Medicinales, 23(2).

Vega-Menchaca, M. C., Rivas-Morales, C., Verde-Star, J., Oranday-Cárdenas, A., Rubio-Morales, M. E., Núñez-González, M. A., Serrano-Gallardo, L. B. 2013. Antimicrobial activity of five plants from Northern Mexico on medically important bacteria. African Journal of Microbiology Research, 7(43), 5011-5017.

Verástegui, M. A. 2000. Evaluación de la actividad antimicrobiana de compuestos de Agave y su acción sobre el tigmotropismo y dimorfismo de Candida albicans. Tesis FCB-UANL. México.

Waterman P. D 1985. Triterpenes from the stem bark of Commiphora Dalzielii. Phytochemistry. 23 (12) : 2925–2928.

Wollenweber E. 1994. External Flavoniods of Ocotillo (Fouquieria splendens). Journal of Biosciences. 689–690.

Xu, X., Miller, F., Baysal-Gurel, K., Gartemann, R., Eichenlaub, K., & Rajashekara, G. 2010. Bioluminiscence imaging of Clavibacter michiganensis Subsp. michiganensis infection in tomato seeds and plants. Applied Environmental Microbiology, 76, 3978-3988. DOI: 10.1128/AEM.00493-10.

Published

2022-11-25

How to Cite

Ramírez Méndez, J. E. ., Hernández Castillo, F. D., Tucuch Pérez, M. A., Camacho Aguilar, I. I. ., Arredondo Valdés, R. ., & Villarreal Quintanilla, J. Ángel . (2022). Biological effectiveness of extracts of Agave striata and Fouquieria splendens against Clavibacter michiganensis subp. michiganensis. Biotecnia, 25(1), 34–42. https://doi.org/10.18633/biotecnia.v25i1.1751

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.