Polyphenolic-rich extracts from the leaves of Ilex paraguariensis and Larrea divaricata and their antioxidant and antiCOVID-19 potential

Authors

  • Juan C. Contreras-Esquivel Universidad Autónoma de Coahuila
  • Carlos N. Cano-González Universidad Autónoma de Coahuila
  • Juan Ascacio-Valdes Universidad Autónoma de Coahuila
  • Jorge A. Aguirre-Joya Universidad Autónoma de Coahuila
  • David Aguillón-Gutierrez Universidad Autónoma de Coahuila
  • Javier Breccia National University of la Pampa
  • Judith D. Espinoza-Perez Coyotefoods
  • Cristóbal N. Aguilar Universidad Autónoma de Coahuila
  • Cristian Torres León Universidad Autónoma de Coahuila https://orcid.org/0000-0002-1614-5701

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1762

Keywords:

COVID-19, phenolic compounds, Ilex paraguariensis, antioxidant activity, molecular docking

Abstract

Yerba mate (Ilex paraguariensis A.St. Hil) and jarilla (Larrea divaricata Cav.) leaves are commonly used as tea infusions in some Latin American countries. This study was conducted to evaluate the antioxidant activity (FRAP, ABTS, and DPPH) and the inhibitory potential of yerba mate and jarilla extracts on the 3CL protease (Mpro) from coronavirus SARS-COV-2 by a molecular docking approach. The main bioactive compounds present in the plant extracts were identified by HPLC-MS. According to the results, the extracts of yerba mate and jarilla showed high antioxidant activity in DPPH (> 91 %), ABTS (> 90 %), and FRAP (> 47 mg TE/g) assays. Additionally, the phenolic compounds present in yerba mate, quercetin-3-O-rutinoside (rutin) (-9.60 kcal/mol) and 3,4-dicaffeoylquinic acid (-8.20 kcal/mol) were more effective on Mpro than the antiviral drugs remdesivir and ribavirin. The compounds rutin and 3,4-dicaffeoylquinic acid have a high affinity and interaction with one of the catalytic residues Cys145 of Mpro. The glycosylation of phenolic compounds affects biological activities: positively anti-COVID-19 and negatively antioxidant. The results suggest that extracts of yerba mate and jarilla leaves could enhance the body's antioxidant defenses and can be used to improve health.

Downloads

Download data is not yet available.

References

Agüero, M. B. et al. (2011) ‘Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity’, Food and Chemical Toxicology, 49(9), pp. 1970–1978. doi: 10.1016/j.fct.2011.05.008.

Aguirre-Joya, J. A. et al. (2018) ‘The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based bioactive film’, Heliyon, 4(12), p. e00942. doi: 10.1016/j.heliyon.2018.e00942.

Benzie, I. and Strain, J. (1996) ‘The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power”: The FRAP assay’, Analytical Biochemistry, 239, pp. 70–76.

Borgio, J. et al. (2020) ‘State-of-the-art tools unveil potent drug targets amongst clinically approved drugs to inhibit helicase in SARS-CoV-2’, Archives of Medical Science, 16(2), pp. 508–518. doi: 10.5114/aoms.2020.94567.

Cárdenas-Hernández, E. et al. (2020) ‘Influence of drying and extraction technology on the chemical profile and antioxidant property of mexican mango byproduct’, in Badwaik, S., Aguilar, Cristobal N., and Haghi, A. K. (eds) Food Loss and Waste Reduction: Technical Solutions and Control. Apple Academic Press.

Chen, J. et al. (2020) ‘Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming’, Biomedicine and Pharmacotherapy, 129(April), p. 110281. doi: 10.1016/j.biopha.2020.110281.

Colpo, A. C. et al. (2016) ‘Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals’, Food Chemistry, 209, pp. 185–195. doi: 10.1016/j.foodchem.2016.04.059.

Das, S. et al. (2020) ‘An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study’, Journal of Biomolecular Structure and Dynamics, 0(0), pp. 1–11. doi: 10.1080/07391102.2020.1763201.

Ghosh, R. et al. (2020) ‘Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study’, Journal of Biomolecular Structure and Dynamics, 0(0), pp. 1–13. doi: 10.1080/07391102.2020.1779818.

Gimeno, A. et al. (2020) ‘Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition’, International Journal of Molecular Sciences, 21(11). doi: 10.3390/ijms21113793.

Hung, I. F. et al. (2020) ‘Triple combination of interferon beta-1b , lopinavir – ritonavir , and ribavirin in the treatment of patients admitted to hospital with COVID-19 : an open-label , randomised , phase 2 trial’, The Lancet, 6736(20), pp. 1–10. doi: 10.1016/S0140-6736(20)31042-4.

Jacques, R. A. et al. (2007) ‘The use of ultrasound in the extraction of Ilex paraguariensis leaves: A comparison with maceration’, Ultrasonics Sonochemistry, 14(1), pp. 6–12. doi: 10.1016/j.ultsonch.2005.11.007.

Kneller, D. W. et al. (2020) ‘Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography’, Nature Communications, 11(1), pp. 7–12. doi: 10.1038/s41467-020-16954-7.

Kong, R. et al. (2020a) ‘COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19’, Bioinformatics, 36(20), pp. 5109–5111. doi: 10.1093/BIOINFORMATICS/BTAA645.

Kong, R. et al. (2020b) COVID-19 Docking Server: An interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19, arXiv preprint. Available at: http://arxiv.org/abs/2003.00163.

Kulkarni, S. A. et al. (2020) ‘Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein’, Journal of Molecular Structure, 1221, p. 128823. doi: 10.1016/j.molstruc.2020.128823.

Molyneux, P. (2004) ‘The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity’, Songklanakarin J. Sci. Technol, 26(2), pp. 211–219. doi: 10.1016/S0891-5849(98)00315-3.

Mpiana, P. T. et al. (2020) ‘Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study’, Chemical Physics Letters, 754(June), p. 137751. doi: 10.1016/j.cplett.2020.137751.

Newman, D. J. and Cragg, G. M. (2020) ‘Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019’, Journal of Natural Products, 83(3), pp. 770–803. doi: 10.1021/acs.jnatprod.9b01285.

Paraiso, I. L., Revel, J. S. and Stevens, J. F. (2020) ‘Potential use of polyphenols in the battle against COVID-19’, Current Opinion in Food Science. doi: 10.1016/j.cofs.2020.08.004.

Perestrelo, R. et al. (2012) ‘Phenolic profile of Sercial and Tinta Negra Vitis vinifera L . grape skins by HPLC – DAD – ESI-MS n Novel phenolic compounds in Vitis vinifera L . grape’, Food Chemistry, 135(1), pp. 94–104. doi: 10.1016/j.foodchem.2012.04.102.

Re, R. et al. (1999) ‘Antioxidant activity applying an improved ABTS radical cation decolorization assay’, Free radical biology & medicine, 26, pp. 1231–1237.

Schinella, G. R. et al. (2000) ‘Antioxidant Effects of an Aqueous Extract of Ilex paraguariensis’, Biochemical and Biophysical Research Communications, 269(2), pp. 357–360. doi: https://doi.org/10.1006/bbrc.2000.2293.

Singh, A. K. et al. (2020) ‘Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies’, Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4), pp. 641–648. doi: 10.1016/j.dsx.2020.05.018.

Torres-León, C., Rojas, R., et al. (2017) ‘Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave’, Food and Bioproducts Processing, 105, pp. 188–196. doi: 10.1016/j.fbp.2017.07.005.

Torres-León, C., Ventura-Sobrevilla, J., et al. (2017) ‘Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties’, Journal of Functional Foods, 37, pp. 176–189. doi: 10.1016/j.jff.2017.07.045.

Torres-León, C. et al. (2020) ‘In silico Screening bioaktiver Verbindungen aus mexikanischen Wüstenpflanzen zur Vorhersage potenzieller Inhibitoren von SARS- Coronavirus 2 (SARS-CoV-2)’, Journal of Medicinal and Spice Plants, 2(4), pp. 153–156.

Vargas-Arispuro, I. et al. (2005) ‘Antifungal lignans from the creosotebush (Larrea tridentata)’, Industrial Crops and Products, 22(2), pp. 101–107. doi: 10.1016/j.indcrop.2004.06.003.

Yu, J. wang, Wang, L. and Bao, L. dao (2020) ‘Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method’, Journal of Functional Foods, 71(March), p. 104016. doi: 10.1016/j.jff.2020.104016.

Zapata, F. J. et al. (2019) ‘Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation’, Journal of Functional Foods, (August), p. 103646. doi: 10.1016/j.jff.2019.103646.

Downloads

Published

2022-11-15

How to Cite

Contreras-Esquivel, J. C., Cano-González, C. N. ., Ascacio-Valdes, J. ., Aguirre-Joya, J. A. ., Aguillón-Gutierrez, D., Breccia, J. ., … Torres León, C. (2022). Polyphenolic-rich extracts from the leaves of Ilex paraguariensis and Larrea divaricata and their antioxidant and antiCOVID-19 potential. Biotecnia, 25(1), 61–66. https://doi.org/10.18633/biotecnia.v25i1.1762

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.