Gas exchanges, isotopic ratio of δ13C/12C and enzymatic activity in bell pepper under different irrigation

Authors

  • LM Ruíz-Machuca Autonomous Agrarian University Antonio Narro, Laguna Unit. Peripheric Raúl López Sánchez Km 1.5 and highway to Santa Fe. 27059, Torreón, Coahuila, Mexico https://orcid.org/0000-0002-1048-7313
  • F Broetto Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
  • ML Cruz de-Souza Department of Rural Engineering, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
  • RB dos Santos-Coscolin Department of Rural Engineering, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil https://orcid.org/0000-0003-2095-4904
  • V Eliodoro Costa Center for Stable Isotopes, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil. https://orcid.org/0000-0003-3889-7514
  • M García-Carrillo Autonomous Agrarian University Antonio Narro, Laguna Unit. Peripheric Raúl López Sánchez Km 1.5 and highway to Santa Fe. 27059, Torreón, Coahuila, Mexico
  • E Concilco-Alberto Graduated from the Doctorate in Science in Agricultural Production, Autonomous Agrarian University Antonio Narro https://orcid.org/0000-0001-5785-9236

DOI:

https://doi.org/10.18633/biotecnia.v26.2217

Keywords:

Capsicum annuum L., carbon sequestration, hydric stress, metabolism productivity

Abstract

The cultivation of bell pepper demand irrigation practices to guarantee fruit production and quality. The objective of this work was to study the physiological and biochemical changes, as well as the variation in isotopic discrimination of δ13C in bell pepper plants submitted to different irrigation blades. The experimental design was organized in a completely randomized design (CRD) with three treatments (irrigation blades) and five replications. Blade 1 (B1): Ψm = 10 to 15 kPa, blade 2 (B2): Ψm = 34 to 40 kPa and blade 3 (B3): Ψm = 54 to 60 kPa. Four evaluations were performed at 50, 65, 80 and 95 days after transplantation (DAT), measuring Leaf water potential (Ψlw), net CO2 assimilation (A), stomatal conductance (gs), transpiration (E), isotopic discrimination (δ13C/12C), enzyme activity of nitrate reductase (NR), superoxide dismutase (SOD) and catalase (CAT). Finally, fruits were collected to determine productivity. Bell pepper plants with less water availability and, depending on their development, the leaf water potential was more negative, resulting in greater stomatal closure which caused a considerable decrease in the net CO2 assimilation, transpiration, enzyme activity of nitrate reductase and fruit production, and greater activity of antioxidative enzymes. The increase and duration of water restriction in bell pepper plants induced less isotopic discrimination of δ13C.

Downloads

Download data is not yet available.

References

Abid, G., M’hamdi, M., Mingeot, D., Aouida, M., Aroua, I., Muhovski, Y., Sassi, K., Souissi, F., Mannai, K. and Jebara, M. 2017. Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme ac-tivities and gene expression patterns in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science. 63: 536-552. https://doi.org/10.1080/03650340.2016.1224857.

Adiredjo, A.L., Navaud, O., Lamaze, T. and Grieu, P. 2014. Leaf carbon isotope discrimination as an accurate indicator of water-use efficiency in sunflower genotypes subjected to five stable soil water contents. Journal of Agronomy and Crop Science. 200: 416-424. https://doi:10.1111/jac.12079.

Alscher, R.G., Erturk, N. and Heath, L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. 53: 1331-1341. https://doi.org/10.1093/jexbot/53.372.1331.

Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55: 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

Araus, J.L., Cabrera-Bosquet, L., Serret, M.D., Bort, J. and Nieto-Taladriz, M.T. 2013. Comparative performance of δ13C, δ 18O and δ 15N for phenotyping durum wheat adaptation to a dryland envi-ronment. Functional Plant Biology. 40: 595–608. http://dx.doi.org/10.1071/FP12254.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Brito, G.G., Suassuna, N.D., Silva, V.N., Sofiatti, V., Diola, V. and Morello, C.L. 2014. Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions. Acta Scientiarum. Agronomy. 36: 335-345. https://doi.org/10.4025/actasciagron.v36i3.17986.

Campbell, W.H. 1988. Nitrate reductase and its role in nitrate assimilation in plants. Physiologia Plantarum. 74(1): 214-219. https://doi.org/10.1111/j.1399-3054.1988.tb04965.x.

Carelli, M.L.C., Ungaro, M.R.G., Fahl, J.I. and Novo, M.C.S.S. 1996. Níveis de nitrogênio, metabolismo, crescimento e produção de girassol. Revista Brasileira de Fisiologia Vegetal. 8: 123-130.

Carvalho, J.deA., Rezende, F.C., Oliveira, E.C. and Aquino, R.F. 2016. Pimentão cultivado em ambiente protegido sob diferentes tensões de água no solo. Engenharia na Agricultura. 23: 236-245. https://doi.org/10.13083/reveng.v24i3.670.

Delfine, S., Loreto, F. and Alvino, A. 2001. Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. Journal of the American Society for Horticultural Science, 126(3): 297-304. https://doi.org/10.21273/JASHS.126.3.297.

Dermitas, C. and Ayas, S. 2009. Deficit irrigation effects n pepper (Capsicum annuum L. Demre) yield in unheated greenhouse condition. Journal of Food, Agriculture & Environment. 7: 989-993.

Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M., Baier, M. and Finkemeier, I. 2006. The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany. 57(8): 1697–1709. https://doi.org/10.1093/jxb/erj160.

Dourado-Neto, D., Nielsen, D.R., Hopmans, J.W., Reichardt. K. and Bacchi, O.O.S. 2000. Software to model soil water retention curves (SWRC, version 2.00). Scientia Agricola. 57: 191- 192. http://dx.doi.org/10.1590/S0103-90162000000100031.

Ehlers, W. and Goss, M. 2003. Water Dynamics in Plant Production. CABI Publishing, Oxon/Cambridge.

Farquhar, G.D., O'leary, M.H. and Berry, J.A. 1982. On the relationship between carbon isotope discrimi-nation and the intercellular carbon dioxide concentration in leaves. Australian Journal Plant Physi-ology. 9: 121-137. https://doi.org/10.1071/PP9820121.

Ferrara, A., Lovelli, S., Di Tommaso, T. and Perniola, M. 2011. Flowering, growth and fruit setting in greenhouse bell pepper under water stress. Journal of Agronomy, 10(1): 12–19. https://10.3923/ja.2011.12.19.

Frizzone, J.A., Gonçalves, A.C.A. and Rezende, R. 2001. Produtividade do pimentão amarelo, Capsicum annum L., cultivado em ambiente protegido, em função do potencial mátrico de água no solo. Acta Scientiarum. 23: 1111-1116.

Giannopolitis, C.N. and Ries, S.K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology. 59: 309-314. https://doi.org/10.1104/pp.59.2.309.

González-Dugo, V., Orgaz, F. and Fereres, E. 2007. Responses of pepper to deficit irrigation for paprika a production. Scientia Horticulturae. 114(2): 77-82. https://doi.org/10.1016/j.scienta.2007.05.014.

Jaworski, E.G. 1971. Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications. 43(6): 1274–1279. https://doi.org/10.1016/S0006-291X(71)80010-4.

Kramer, P.J. and Boyer, J.S. 1995. Water relations of plants and soils. San Diego, CA: Academic Press.

Kulkarni, M. and Phalke, S. 2009. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae. 120(2): 159-166. https://doi.org/10.1016/j.scienta.2008.10.007.

Kumar, R., Solankey, S.S. and Singh, M. 2012. Breeding for drought tolerance in vegetables. Vegetable Science. 39(1): 1-15.

Marur, C.J., Mazzafera, P. and Magalhães, A.C. 2000. Atividade da enzima redutase do nitrato em algodoeiro submetido ao déficit hídrico e posterior recuperação da turgescência. Scientia Agricola. 57: 277-281. https://doi.org/10.1590/S0103-90162000000200013.

Miller, G., Suzuki, N., Ciftci‐Yilmaz, S. and Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment. 33: 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x.

Nardini, A., Tyree M.T. and Salleo, S. 2001. Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol. 125: 1700–1709. https://doi.org/10.1104/pp.125.4.1700.

Noctor, G. and Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology. 49: 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249.

Paiva, A.S., Fernandes, E.J., Rodrigues, T.J.D. and Turco, J.E.P. 2005. Condutância estomática em folhas de feijoeiro submetido a diferentes regimes de irrigação. Engenharia Agrícola, 25(1): 161-169. https://doi.org/10.1590/S0100-69162005000100018.

Peixoto, P.H.P., Cambraia, J., Sant’Anna, R., Mosquim, P.R. and Moreira, M.A. 1999. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3): 137–143.

Raij, B.V., Cantarella, H., Quaggio, J.A. and Furlani, A.M.C. 1997. Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. revisada e atualizada. Campinas, Instituto Agronômico/Fundação IAC, 285 p. (Boletim técnico, 100). Brazil.

Rouphael, Y., Cardarelli, M., Colla, G. and Rea, E. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience. 43(3): 730–736. https://doi.org/10.21273/HORTSCI.43.3.730.

Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A. and Hammel, H.T. 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science, 148(3368): 339-346. https://doi: 10.1126/science.148.3668.339.

Sezen, S.M., Yazar, A. and Eker, S. 2006. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management, 81(1-2): 115-131. https://doi.org/10.1016/j.agwat.2005.04.002.

Srivastava, H.S. 1980. Regulation of nitrate reductase activity in higher plants. Phytochemistry. 19: 725-733. https://doi.org/10.1016/0031-9422(80)85100-4.

Taiz, L. and Zeiger, E. 2002. Plant Physiology. (3rd ed). Sunderland, Massachusetts: Sinauer Associates, Inc., Publisher.

Trani, P.E., Tivelli, S.W. and Carrijo, O.A. 2011. Fertirrigação em Hortaliças. 2.ª ed. Revisado e atualizado. Campinas: Instituto Agronômico, 51p. (Série Tecnologia APTA. Boletim Técnico IAC, 196). Brazil.

Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsatu-rated soils. Soil Science Society of America Journal. 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.

Yousfi, S., Serret, M.D., Márquez, A.J., Voltas, J. and Araus, J.L. 2012. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist. 194(1): 230–244. https://doi.org/10.1111/j.1469-8137.2011.04036.x.

Yuan, X.K., Yang, Z.Q., Li, Y.X., Liu, Q. and Han, W. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photo-synthetica. 54: 28–39. https://doi: 10.1007/s11099-015-0122-5.

Graphical abstract

Additional Files

Published

2024-08-28

How to Cite

Ruiz Machuca, L. M., Broetto, F., Cruz de Souza, M. L., dos Santos Coscolin, R. B., Costa, V. E., García Carrillo, M., & Concilco Alberto, E. (2024). Gas exchanges, isotopic ratio of δ13C/12C and enzymatic activity in bell pepper under different irrigation. Biotecnia, 26, 464–471. https://doi.org/10.18633/biotecnia.v26.2217

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.