Stages of the cryopreservation protocol and its effect on the viability and regeneration of grape-vine zygotic embryos (Vitis vinifera L.)

Authors

  • D Esquivel-Figueroa Centro de Investigación en Alimentación y Desarrollo, A .C.
  • ME Tiznado-Hernández Centro de Investigación en Alimentación y Desarrollo, A .C.
  • MA Islas-Osuna Centro de Investigación en Alimentación y Desarrollo, A .C.
  • MF Lazo-Javalera Departamento de Agricultura y Ganadería de la Universidad de Sonora. Carretera 100 a Bahía de Kino km. 21.5, Hermosillo, Sonora, México.
  • M Rivera-Domínguez Centro de Investigación en Alimentación y Desarrollo, A.C.

DOI:

https://doi.org/10.18633/biotecnia.v25i3.1991

Keywords:

Key words: cryoprotectant, liquid nitrogen, vitrification

Abstract

The grapevine is one of the main crops in the world and the state of Sonora is the largest producer in Mexico. This crop is in constant danger due to various biotic and abiotic factors, therefore the importance of its conservation. Cryopreservation is ideal for this culture, but it can cause physiological, molecular, and biochemical alterations, affecting viability and regeneration. Hence, in this work it was proposed to analyze the effect of the stages of the cryopreservation protocol on the viability and regeneration of grapevine zygotic embryos. Tissue viability (V) and seedling regeneration (RP) showed that PVS2 protects embryos (V:85%, PR:60%), while combined exposure to PVS2 solution and liquid nitrogen (NL) caused decreased viability and regeneration (V: 68%; PR: 2%). A more drastic effect was observed when the tissue was exposed to PVS2+NL and rewarming (RC) (V:68%; PR:0%). However, viability and regeneration recovered when the tissue was subjected to PVS2+NL+RC and unloading solution (SD) (V:92%; RP:60%). It is concluded that the use of the unloading solution is essential to avoid tissue damage due to the different stages of cryopreservation.

Downloads

Download data is not yet available.

Author Biography

M Rivera-Domínguez, Centro de Investigación en Alimentación y Desarrollo, A.C.

Investigador Tittular

Coordinacion de Ciencias de los Alimentos. Centro de Investigación y Desarrollo, A.C.

References

Bettoni, J. C., Bonnart, R., Shepherd, A., Kretzschmar, A. y Volk, G. 2019. Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations. Vitis. 58, 71-78. doi:10.5073/vitis.2019.58.71-78.

Bi W. L., Pan Ch., Hao X. Y., Cui Z. H., Kher M. M., Marković Z., Wang Q. Ch. y Teixeira da Silva J. 2017. Cryopreservation of grapevine (Vitis spp.) - a review. In Vitro Cell. Dev. Biol. Plant (2017) 53:449-460 DOI 10.1007/s11627-017-9822-9

Da Silva Cordeiro, L., Collin, M., Callado, C. H., Simões-Gurgel, C., Albarello, N. y Engelmann, F. 2020. Long-term conservation of Tarenaya rosea (Cleomaceae) root cultures: histological and histo-chemical analyses during cryopreservation using the encapsulation-vitrification technique. Proto-plasma. 257(4), 1021-1033. doi:10.1007/s00709-020-01486-0.

De Souza Grzybowski, C., De Castro Ohlson, O., Carvalho da Silva, R. y Panobianco, M. 2012. Viability of barley seeds by the tetrazolium test. Revista Brasileira de Sementes. 34(1), 47-54. doi:10.1590/S0101-31222012000100006.

Ganino, T., Silvanini, A., Beghé, D., Benelli, C., Lambardi, M. y Fabbri, A. 2012. Anatomy and osmotic potential of the Vitis rootstock shoot tips recalcitrant to cryopreservation. Biología Plantarum. 56(1), 78-82. doi:10.1007/s10535-012-0019-0.

García-Coronado, H., María-Elena, B.F., Troncoso-Rojas, R., Rivera-Domínguez, M. y Tizna-do-Hernández, M. 2016. Cryopreservation by vitrification of Vitis vinifera cv. “Red Globe” zygotic embryos and effect on the expression of DNA methyltransferase genes. Journal of Agricultural Science and Technology B. 6. doi:10.17265/2161-6264/2016.06.004.

González-Arnao, M. T., Martínez-Montero, M. E., Cruz-Cruz, C. A. y Engelmann, F. 2014. Advances in cryogenic techniques for the long-term preservation of plant biodiversity. In M. R. Ahuja y K. G. Ramawat (Eds.), Biotechnology and Biodiversity (129-170pp). Cham: Springer International Pu-blishing.

González Vera, M. J., Zanatta Aumonde, T., Meneghello, G. E., Noguez Martins, A. B., Aquino, Y. y Peña, P. 2019. Protocolo de análisis de viabilidad de semillas de chía mediante test de tetrazolio. Revista Mexicana de Ciencias Agrícolas. 10(7), 1481-1489.

Kaczmarczyk, A., Funnekotter, B., Menon, A., Phang, P., Al-Hanbali, A., Bunn, E. y Mancera, R. 2012. Current issues in plant cryopreservation. In I. I. Katkov (Ed.), Current Frontiers in Cryobiology, 417-43. Croacia: IntechOpen. doi: 10.5772/32860.

Kaity, A., Ashmore, S. E., Drew, R. A. y Dulloo, M. E. 2008. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Reports. 27(9), 1529-1539. doi:10.1007/s00299-008-0558-1.

Lazo-Javalera, M. F., Tiznado-Hernández, M. E., Vargas-Arispuro, I., Martínez-Téllez, M. A., Is-las-Osuna, M. A., Hernández-Oñate, M. A., Martínez-Montero, M. y Rivera-Domínguez, M. 2018. Análisis de la pérdida iónica de yemas de vid (Vitis vinifera L.) crioconservadas. Biotecnia. 20(3), 17-22. doi:10.18633/biotecnia.v20i3.706.

Lazo-Javalera, M. F., Astorga-Cienfuegos, K. R., Tiznado-Hernández, M. E., Vargas-Arispuro, I., Mar-tínez-Téllez, M. A., Islas-Osuna, M. A., Oñate-Hernández, M. A., Martínez-Montero, M. E. y Ri-vera-Domínguez, M. 2017. Effect of cryoprotectants on the morphology and electrolyte leakage on axillary buds of cryopreserved grapevine cv. `Flame Seedless ́. Investigación y Ciencia. 1665-4412, 25, 36-44.

Lazo-Javalera, M. F., Tiznado-Hernández, M. E., Vargas-Arispuro, I., Martínez-Téllez, M. A., Is-las-Osuna, M. A., Oñate-Hernández, M. A. y Rivera-Domínguez, M. 2016. Genetic stability of cryopreserved grapevine (Vitis vinifera L.) genome by vitrification method. Journal of Agricultural Science and Technology B. 6, 380-386. doi:10.17265/2161-6264/2016.06.003.

Lazo-Javalera, M. F., Tiznado-Hernández, M. E., Vargas-Arispuro, I., Valenzuela-Soto, E., Ro-cha-Granados M. C., Martínez-Montero, M. E. y Rivera-Domínguez, M. 2015. Data on antioxidant activity in grapevine (Vitis vinifera L.) following cryopreservation by vitrification. Data in brief. 5, 549-555. doi:10.1016/j.dib.2015.10.012.

Martínez-Montero, M. E., González-Arnao, M. T. y Engelmann, F. 2012. Cryopreservation of tropical plant germplasm with vegetative propagation - Review of Sugarcane (Saccharum spp.) and Pine-apple (Ananas comusus L. Merrill) Cases. In I. K. Igor (Ed.), Current Frontiers in Cryopreservation (Ch. 18, 359-396). Rijeka: IntechOpen. doi: 10.5772/32047.

Murashige, T. y Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum. 15: 473-497.

Nausch, H. y Buyel, J. F. 2021. Cryopreservation of plant cell cultures – diverse practices and protocols. New Biotechnology. 62, 86-95. doi:10.1016/j.nbt.2021.02.002.

Normah, M. N., Sulong, N. y Reed, B. M. 2019. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology, 87, 1-14.

Pinto, M. D. S., Paiva, R., Silva, D. P. C. D., Santos, P. A. A., Freitas, R. T. D. y Silva, L. C. 2016. Cryopreservation of coffee zygotic embryos: dehydration and osmotic rehydration. Ciência e Agrotecnología, 40(4), 380-389.

Quijada-Rivera, M., Tiznado-Hernández, M. E., Hernández-Oñate, M. A., Vargas-Arispuro, I., Astor-ga-Cienfuegos, K. R., Lazo-Javalera, M. F. y Rivera-Domínguez, M. 2023. Transcriptome assess-ment in ´Red Globe´ grapevine zygotic embryos during the cooling and warming phase of the cry-opreservation procedure. Cryobiology 110, 56-68. https://doi.org/10.1016/j.cryobiol.2022.12.016.

Rahmah, S., Ahmad Mubbarakh, S., Soo Ping, K. y Subramaniam, S. 2015. Effects of drop-let-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Bras-sidium shooting star orchid. The Scientific World Journal. 961793. doi:10.1155/2015/961793.

Sakai, A., Kobayashi, S. y Oiyama, I. 1990. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9(1), 30-33.

Souza, F. V. D., Kaya, E., de Jesus Vieira, L., de Souza, E. H., de Oliveira Amorim, V. B., Skogerboe, D., Matsumoto, T., Alves, A. A. C., da Silva Ledo, C. A. y Jenderek, M. M. 2016. Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple geno-types. Plant Cell, Tissue, and Organ Culture. 124(2), 351-360. doi:10.1007/s11240-015-0899-8.

Tiznado Hernández M. E., Miranda Jiménez A., Ojeda Contreras A. J., Sánchez Estrada A., Arreola Ortiz H. J. y Martínez Díaz G. 2015. Desarrollo de nuevas variedades de uva (Vitis vinifera L.) sin semilla mediante rescate de embriones. Revista Mexicana de Ciencias Agrícolas. 6 (5), 917-928.

Ugbede, E. y Hamadina, E. 2018. Dormancy in seeds of hybrid cassava varieties (TMS 98/0505 and TMS 95/0379) prior to hardening of seed Coat. International Journal of Agriculture and Forestry, 8(2), 98-103.

Villalobos-Olivera, A., Martínez, J., Quintana, N., Zevallos, B. E., Cejas, I., Lorenzo, J. C., Gonzá-lez-Olmedo, J. y Martínez-Montero, M. E. 2019. Field performance of micropropagated and cryo-preserved shoot tips-derived pineapple plants grown in the field for 14 months. Acta Physiologia Plantarum. 41(3), 34. doi:10.1007/s11738-019-2825-x.

Zakaria, S., Subramaniam, S., Mubbarakh, S. A. y James Antony, J. J. 2020. Effect of encapsula-tion-dehydration cryopreservation on histological analysis of oncidium golden anniversary orchid PLBs. IOP Conference Series: Earth and Environmental Science. 596, 012082. doi:10.1088/1755-1315/596/1/012082.

Graphical abstract

Published

2023-11-13

How to Cite

Esquivel-Figueroa, D., Tiznado-Hernández, M. E. ., Islas-Osuna, M. A., Lazo-Javalera, M. F., & Rivera-Domínguez, M. (2023). Stages of the cryopreservation protocol and its effect on the viability and regeneration of grape-vine zygotic embryos (Vitis vinifera L.). Biotecnia, 25(3), 170–175. https://doi.org/10.18633/biotecnia.v25i3.1991

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.