Evaluation of the in vitro and in vivo antihypertensive effect and antioxidant activity of blue corn hydrolysates derived from wet-milling//Evaluación del efecto antihipertensivo in vitro e in vivo y actividad antioxidante del hidrolizado de maíz azul derivado de la molienda húmeda

Authors

  • Alvaro Montoya-Rodríguez Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0001-8358-0984
  • Evelyn Isabel Osuna-Gallardo Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México
  • Francisco Cabrera-Chávez Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0003-4985-9169
  • Jorge Milán-Carrillo Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0002-7520-517X
  • Cuauhtémoc Reyes-Moreno Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0003-4577-1629
  • Evelia María Milán-Noris Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0002-4830-4789
  • Edith Oliva Cuevas-Rodríguez Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0001-6648-7323
  • Saraid Mora-Rochín Programa Regional del Noroeste para el Doctorado en Biotecnología y Maestría en Biotecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, AP 1354, CP 80000, Culiacán, Sinaloa, México https://orcid.org/0000-0002-9630-2518

DOI:

https://doi.org/10.18633/biotecnia.v22i2.1257

Keywords:

blue corn, wet-milling, corn gluten meal, antihypertensive, antioxidant activity

Abstract

Hypertension is considered a risk factor for coronary heart disease, and its prevalence has increased substantially. Inhibition of angiotensin-converting enzyme (ACE-I) is key to lower blood pressure, making it an excellent treatment for hypertension. Corn (Zea mays L.) is an important source of bioactive peptides with potential anti-hypertensive activity related to ACE-I inhibition. These peptides can be obtained through the hydrolysis of corn gluten meal (CGM), as wetmilling by-products. The aim was to evaluate the in vitro and in vivo ACE-I inhibitory activity of blue CGM hydrolysates. Enzymatic digestion in vitro of blue CGM was conducted at different times. Hydrolysis for 360 min significantly increased both soluble protein and antioxidant activity by 4 and 8-fold respectively, the maximum ACE-I inhibition (94.3 %) was observed with 260 min hydrolysate. Mice were treated with the blue CGM hydrolysate (260 min), captopril or PBS to test the bioavailability in vivo. The CGM hydrolysate was detected in serum after 5 and up to 30 min after ingestion, showing the maximum ACE-I inhibitory capacity (59 %) during the first 15 min. Overall, this work showed that the blue CGM hydrolysate could serve as a functional food ingredient with antihypertensive effect due to its blood pressure-lowering peptides.

RESUMEN

La hipertensión es factor de riesgo en enfermedades coronarias, y su prevalencia ha aumentado sustancialmente. La inhibición de enzima convertidora de angiotensina (ECA) es clave para disminuir presión arterial, y excelente tratamiento para hipertensión. El maíz (Zea mays L.) es fuente de péptidos bioactivos con actividad antihipertensiva por inhibición de ECA. Péptidos pueden obtenerse por hidrólisis de harina de gluten de maíz (HGM), como subproducto de molienda húmeda. El objetivo fue evaluar in vitro e in vivo actividad inhibitoria de ECA en hidrolizados de HGM azul. La digestión enzimática in vitro de HGM fue conducida a diferentes tiempos. La hidrólisis por 360 min aumento significativamente proteína soluble y actividad antioxidante de 4 y 8 veces, respectivamente; la máxima inhibición de ECA (94.3 %) fue observada a 260 minutos del hidrolizado. Ratones fueron tratados con HGM hidrolizado (260 minutos), captopril o PBS para evaluar biodisponibilidad in vivo. Después de la ingestión, HGM hidrolizado fue detectado en suero en 5 hasta 30 minutos, mostrando máxima inhibición de ECA (59 %) durante los primeros 15 minutos. En general, este trabajo mostró que hidrolizado de HGM podría servir como ingrediente funcional en alimentos con efecto antihipertensivo debido a péptidos reductores de presión arterial.

Downloads

Download data is not yet available.

References

Anderson, T.J. and Lamsal B. 2011. Zein extraction from corn, corn products, and coproducts and modification for various applications: A Review. Cereal Chemistry, 88(2):159-173.

Amir, S., Brown, Z.W. and Amit, Z. 1980. The role of endorphins in stress: Evidence and speculations. Neuroscience and Biobehavioral Reviews, 4(1):77-86.

AOAC. 1990. Official Methods of Analysis. 16 Edition. Association of Official Analytical Chemists, Washington, D. C, EUA.

Cai, M., Gu, R., Yi, W., Lu, J., Ma, Y., Dong, Z. and Lin, F. 2015. Method for preparing active peptides from corn germ proteins. China National Research Institute of Food and Fermentation Industries, United States Patent 8940685. Retrieved from.

Cabrera-Chavez, F., Iametti, S., Miriani, M., Calderon de la Barca, A.M., Mamone, G. and Bonomi, F. 2012. Maize prolamins resistant to peptic-tryptic digestion maintain immunerecognition by IgA from some celiac disease patients. Plant Food for Human Nutrition. 67(1): 24-30.

Cian, R.E., Garzon, A.G., Bentancur-Ancona, D., Chel-Guerrero, L. and Drago, S.R. 2015. Hydrolyzates from Pyropia columbina seaweed have antiplatelet aggregation, antioxidant and ACE I inhibitory peptides which maintain bioactivity after simulated gastrointestinal digestion. LWT-Food Science and Technology, 64(2):881-888.

Da Silva-Messias, F., Galli, V., Anjos-Silva, S.D.D., Artigas-Schirmer, M. and Valmor-Rombaldi, C. 2015. Micronutrient and functional compounds biofortification of maize grains. Critical Reviews in Food Science and Nutrition, 55(1):123-139.

Díaz-Gómez, J.L., Ortiz-Martínez, M., Aguilar, O., García-Lara, S. and Castorena-Torres, F. 2018. Molecules, 23(2): 312-326.

García, M., Puchalska, P., Esteve, C. and Marina, M. 2013. Vegetables foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, 106:328-349.

Gaxiola-Cuevas, N., Mora-Rochin, S., Cuevas-Rodríguez, E.O., León-López, L., Reyes-Moreno, C., Montoya-Rodríguez, A. and Milán-Carrillo, J. 2017. Phenolic acids profiles and cellular antioxidant activity in tortillas produced from Mexican maize landrace processed by nixtamalization and lime extrusion cooking. Plant Food for Human Nutrition, 72(3):314-320.

Guo, Y., Wang, K., Wu, B., Wu, P., Duan, Y. and Ma, H. 2019. Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect. Journal of Functional Food, 103584. doi:10.1016/j.jff.2019.103584

Johnson, L.A. and May, J.B. 2003. Wet milling: The basis for corn biorefineries. In: Corn: Chemistry and Technology, second ed. P. J. White and L. A. Johnson, eds. American Association of Cereal Chemist: St. Paul, MN.

Kong, B. and Xiong, Y.L. 2006. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. Journal of Agricultural and Food Chemistry, 54(16):6059-6068.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259):680-685.

Lam, L.H., Shimamura, T., Sakaguchi, S., Noguchi, K., Ishiyama, M., Fujimura, Y. and Ukeda, H. 2007. Assay of angiotensin I-converting enzyme-inhibiting activity based on the detection of 3-hydroxybutyric acid. Analytical Biochemistry, 364(2):104-111.

Li, G., Liu, W., Wang, Y., Jia, F., Wang, Y., Ma, Y., Gu, R. and Lu, J. 2019. Chapter one- functions and applications of bioactive peptides from corn gluten meal. Advances in Food and Nutrition Research, 87:1-41.

Li, X.X., Han, L.J. and Chen, L.J. 2008. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture, 88:1660–1666.

Milaoinovic, M., Radosavljevic, M., Dokic, L. and Jakovljevic, J. 2007. Wet-milling properties of ZP maize hybrids. Maydica, 52(3):289-292.

Montoya‐Rodríguez, A., Mejía, E.G., Dia, V.P., Reyes‐Moreno, C. and Milan‐Carrillo, J. 2014. Extrusion improved the anti‐inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS‐induced human THP‐1 macrophage‐like and mouse RAW 264.7 macrophages by preventing activation of NF‐κB signaling. Molecular Nutrition & Food Research, 58(5):1028-1041.

Ou, B., Hampsch-Woodill, M. and Prior, R.L. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10):4619-4326.

Patten, G.S., Abeywardena, M.Y. and Bennet, L.E. 2016. Inhibition of angiotensin-converting enzyme, angiotensin II receptor blocking, and blood pressure-lowering bioactivity across plant families. Critical Reviews in Food Science and Nutrition, 56(2):181-214.

Popovici, R., Alexa, I., Novac, O., Vrinceanu, N., Popovici, E., Lupusoru, C. and Voicu, V. 2011. Pharmacokinetics study on mesoporous silica-captropril controlled release systems. Digest Journal of Nanomaterials, 6(3):1619-1630.

Ramírez-Torres, G., Ontiveros, N., López-Teros, V., Ibarra-Diarte, J.A., Reyes-Moreno, C., Cuevas-Rodriguez, E.O. and Cabrera-Chávez, F. 2017. Amaranth protein hydrolysates efficiently reduce systolic blood pressure in spontaneously hypertensive rats. Molecules, 22(11):1905-1912.

Roy, M.K., Koide, M., Rao, T.P., Okubo, T., Ogasawara, Y. and Juneja, L.R. 2010. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. International Journal of Food Science and Nutrition, 61(2):109-124

Sánchez, G.J.J., Goodman, M.M. and Stuber, C.W. 2000. Isozymatic and morphological diversity in the races of maize of México. Economic Botany, 54(1):43-59.

Sánchez-Rivera, L., Martínez-Maqueda, D., Cruz-Huerta, E., Miralles, B. and Recio, I. 2014. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63:170-181.

Serna-Saldívar, S.O. 1996. Química, almacenamiento e industrialización de los cereales. AGT. Editor, S.A. México, DF, México.

Singh, S.K., Johnson, L.A., Pollak, L.M., Fox, S.R. and Bailey, T.B. 1997. Comparison of Laboratory and Pilot-Plant Corn Wet-Milling Procedures 1. Cereal Chemistry, 74(1):40-48.

Taboada-Gaytan, O., Pollak, L.M., Johnson, L.A., Fox, S.R. and Montgomery, K.T. 2010. Variation among physical, compositional, and wet-milling characteristics of the F1 generation of corn hybrids of introgressed exotic and adapted inbred lines. Cereal Chemistry, 87(3):175-181.

Taboada-Gaytan, O., Pollak, L.M., Johnson, L.A. and Fox, S.R. 2009. Wet-milling characteristics of 10 lines from germplasm Enhancement of Maize Project compared with five Corn Belt lines. Cereal Chemistry, 86(2):204-209.

Uriarte-Aceves, P.M., Cuevas-Rodríguez, E.O., Gutiérrez-Dorado, R., Mora-Rochín, S., Reyes-Moreno, C., Puangpraphant, S. and Milán-Carrillo, J. 2015. Physical, Compositional, and Wet-Milling Characteristics of Mexican Blue Maize (Zea mays L.) Landrace. Cereal Chemistry, 92(5):491-496.

Vignaux, N., Fox, S.R. and Johnson, L.A. 2006. A 10-g laboratory wet-milling procedure for maize and comparison with larger-scale laboratory procedures. Cereal Chemistry, 83(5):482-490.

Zheng, X., Wang, J., Liu, X., Sun, Y., Zheng, Y., Wang, X. and Liu, Y. 2015. Effect of hydrolysis time on the physicochemical and functional properties of corn glutelin by Protamex hydrolysis. Food Chemistry, 172:407-415.

Zhou, K., Sun, S. and Canning, C. 2012. Production and functional characterization of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chemistry, 135(2):1192-1197.

Zhu, B., He, H. and Hou, T. 2019. A comprehensive review of corn protein-derived bioactive peptides: production, characterization, bioactivities, and transport pathways. Food Science and Food Safety, 18(1):329-345.

Downloads

Published

2020-03-21

How to Cite

Montoya-Rodríguez, A., Osuna-Gallardo, E. I., Cabrera-Chávez, F., Milán-Carrillo, J., Reyes-Moreno, C., Milán-Noris, E. M., … Mora-Rochín, S. (2020). Evaluation of the in vitro and in vivo antihypertensive effect and antioxidant activity of blue corn hydrolysates derived from wet-milling//Evaluación del efecto antihipertensivo in vitro e in vivo y actividad antioxidante del hidrolizado de maíz azul derivado de la molienda húmeda. Biotecnia, 22(2), 155–162. https://doi.org/10.18633/biotecnia.v22i2.1257

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)