Effect of different blue:red LED light ratios on habanero pepper (Capsicum chinense Jacq.) plants

Authors

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1288

Keywords:

Capsicum chinense Jacq., habanero pepper, LED light, controlled environment

Abstract

Habanero pepper is the most economically important horticultural crop in the Yucatan peninsula. This crop under a controlled environment with LED lighting, would allow conti­nuous production, with an exponential increase in yield, and be free of pests and diseases. The objectives were to evaluate the effects of five blue:red LED light ratios and a fluorescent control on plant growth, photosynthetic pigments, phenolic compounds and nutriments concentration in leaf; pollen germination, leaf thickness, ovary anatomy and anther of habanero pepper ‘Mayan Ba’alché’ grown under controlled conditions. The results showed that the treatments did not induce an effect on plant growth. Red light favored fruit yield and stomatal frequency. Monochromatic red light favored the concentration of photosynthetic pigments, Mg and Mn and induced a lower P and Cu concentration. Monochromatic blue light favored the concentration of phenolic compounds. The control induced a higher K concentration among some LED treatments and increased pollen germination and leaf thickness as well as monochromatic blue light. The anatomy of ovules in ovaries and pollen in anthers has no effect of the treatments.

Downloads

Download data is not yet available.

Author Biography

Jorge Enrique Mendoza Paredes, Universidad Autónoma Chapingo

Doctorado en Ciencias en Horticultura, UACh (En finalización)

Maestría en Ciencias en Horticultura, UACh

References

Amoozgar, A., Mohammadi, A. y Sabzalian, M.R. 2016. Impact of light-emitting diode irradiation on the photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica. 55: 85-95. https://doi.org/10.1007/s11099-016-0216-8

Alcántar, G. y Sandoval, M. 1999. Manual de análisis químico de tejido vegetal. Publicación especial 10. Sociedad Mexicana de la Ciencia del Suelo, A. C. Estado de México, México.

Agarwal, A., Gupta, S.D., Barman, M. y Mitra, A. 2018. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. Environmental and Experimental Botany. 156: 170-182. https://doi.org/10.1016/j.envexpbot.2018.09.009

AOAC. 1980. Official methods of analysis. 12th ed. Association of Official Analytical Chemistry. Washington, D.C.

Berkovich, Y.A., Konovalova, I.O., Smolyanina, S.O., Erokhin, A.N., Avercheva, O.V., Bassarskaya, E.M., Kochetova, G.V., Zhigalova, T.V., Yakovleva, O.S. y Tarakanov, I.G. 2017. LED crop illumination inside space greenhouses. REACH - Reviews in Human Space Exploration. 6: 11–24. http://dx.doi.org/10.1016/j.reach.2017.06.001

Blankenship, R.E. 2014. Molecular mechanisms of photosynthesis. 2nd ed. Wiley Blackwell. New Delhi, India.

Bojórquez-Quintal, E., Velarde-Buendía, A., Ku-González, A., Carillo-Pech, M., Ortega-Camacho, D., Echevarría-Machado, I., Pottosin I. y Martínez-Estévez, M. 2014. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Frontiers in Plant Science. 5: 605. http://dx.doi.org/10.3389/fpls.2014.00605

CICY. 2016. Ficha informativa unidad productora de semillas de chile habanero. Centro de Investigación Científica de Yucatán. Abril (2016): 1-15. [Consultado 10 enero 2020]. Disponible en: https://www.cicy.mx/Documentos/CICY/quienes-somos/2016/Ficha-UPS-Habanero.pdf

Craver, J.K., Boldt, J.K. y Lopez, R.G. 2018. Radiation intensity and quality from sole-source light-emitting diodes affect seedling quality and subsequent flowering of long-day bedding plant species. HortScience. 53(10): 1407-1415. https://dx.doi.org/10.21273/HORTSCI13228-18

Dhawan, A.K. y Malik, C.P. 1981. Effect of growth regulators and light on pollen germination and pollen tube growth in Pinus roxburghii Sarg. Annals of Botany. 47(2): 239-248.

Demotes-Mainard, S., Pérona, T., Corotb, A., Bertheloota, J., Gourrierecb, J.L., Pelleschi-Travierb, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N. y Sakr, S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121: 4–21. http://dx.doi.org/10.1016/j. envexpbot.2015.05.010

Evert, R.F. y Eichhorn, S.E. 2012. Raven biology of plants. 8 ed. MacMillan, USA.

Gangadhar, B.H., Mishra, R.K., Pandian, G. y Park, S.W. 2012. Comparative study of color, pungency, and biochemical composition in chili pepper (Capsicum annuum) under different light-emitting diode treatments. Hortscience. 47(12): 1729–1735. https://doi.org/10.21273/HORTSCI.47.12.1729

Gangappa, S.N. y Botto, J.F. 2016. The multifaceted roles of hy5 in plant growth and development. Molecular Plant. 9: 1353–1365. https://dx.doi.org/10.1016/j.molp.2016.07.002

García-Caparrós, P., Almansa, E.M., Chica, R.M. y Lao, M.T. 2019. Effects of artificial light treatments on growth, mineral composition, physiology, and pigment concentration in Dieffenbachia maculate “Compacta” plants. Sustainability. 11: 2867. https://dx.doi.org/10.3390/su11102867

Gerovac, J.R., Craver, J.K., Boldt, J.K. y Lopez, R.G. 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience. 51(5): 497-503. https://doi.org/10.21273/HORTSCI.51.5.497

Hasan, M., Bashir, T., Ghosh, R., Lee, S. K., y Bae, H. 2017. An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules. 22(9): 1420. https://dx.doi.org/10.3390/molecules22091420

Heo, J. W., Kang, D. H., Bang, H. S., Hong, S. G., Chun, C. H., y Kang, K. K. 2012. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology. 30(1): 6-12. https://dx.doi.org/10.7235/hort.2012.11118

Hoagland, D.R. y Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station. California, USA.

Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W. y Harbinson, J. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany. 61(11): 3107-3117. http://dx.doi.org/10.1093/jxb/erq132

Hoyo, Y., Fujiwara, K. y Hoshino, Y. 2014. Effects of different wavelengths of LED light on pollen germination and direction of pollen tube elongation in Cyrtanthus mackenii. Advances in Horticultural Science. 28(4): 190-194.

Huché-Thélier, L., Crespel, L., Gourrierec, J.L., Morel, P., Sakr, S. y Leduc, N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany. 121: 22–38. https://dx.doi.org/10.1016/j.envexpbot.2015.06.009

Jeon, Y., Son, K., Kim, S. y Oh, M. 2017. Growth and bioactive compounds as affected by irradiation with various spectrum of light-emitting diode lights in dropwort. Horticulture. Environment, and Biotechnology. 58: 467–478. https://doi.org/10.1007/s13580-017-0354-3

Katagiri, F., Canelon-Suarez, D., Griffin, K., Petersen, J., Meyer, R.K. y Siegle, M. 2015. Design and construction of an inexpensive homemade plant growth chamber. PLoS ONE. 10(5): e0126826. https://doi.org/10.1371/journal.pone.0126826

Kozai, T. y Niu, G. 2016. Role of the plant factory with artificial lighting (PFAL) in urban areas. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 115-128. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-801775- 3.00002-0

Kubota, C. 2016. Growth, development, transpiration and translocation as affected by abiotic environmental factors. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 151-164. Academic Press, USA. http:// dx.doi.org/10.1016/B978-0-12-801775-3.00010-X

Lim, T. K. 2013. Capsicum chinense. En: Edible medicinal and non-medicinal plants: Volume 6, Fruits. T. K. Lim (ed.), pp 205-212. Springer Science+Business Media, Dordrecht. https://doi.org/10.1007/978-94-007-5628-1_30

Liu, X. Y., Jiao, X. L., Chang, T. T., Guo, S. R. y Xu, Z. G. 2018. Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios. Photosynthetica. 56: 1212-1217. https://dx.doi.org/10.1007/s11099-018-0814-8

Miao, Y., Chen, Q., Qu, M., Gao, L. y Hou, L. 2019. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber. Scientia Horticulturae. 257: 108680. https://doi.org/10.1016/j.scienta.2019.108680

Mercado, J.A., Fernández-Muñoz, R.F. y Quesada, M.A. 1994. In vitro germination of pepper pollen in liquid medium. Scientia Horticulturae. 57: 273-281. https://doi.org/10.1016/0304-4238(94)90110-4

Naznin, M.T., Lefsrud, M., Gravel, V. y Azad, M.O.K. 2019. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants. 8(4): 93. https://doi.org/10.3390/plants8040093

Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., Stanghellini, C., Marcelis, L.F.M., Orsini, F. y Gianquinto, G. 2019. Unraveling the role of red: blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science. 10: 305. https://doi.org/10.3389/fpls.2019.00305

Pérez-Pastrana, J., Islas-Flores, I., Bárány, I., Álvarez-López, D., Canto-Flick, A., Canto-Canché, B., Peña-Yama, L., Muñoz- Ramírez, L., Avilés-Viñas, S., Testillano, P.S. y Santana-Buzzy, N. 2018. Development of the ovule and seed of Habanero chili pepper (Capsicum chinense Jacq.): Anatomical characterization and immunocytochemical patterns of pectin methyl-esterification. Journal of Plant Physiology. 230: 1-12. https://doi.org/10.1016/j.jplph.2018.08.005

Pocock, T. 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience. 50(9): 1281-1284. https://dx.doi.org/10.21273/HORTSCI.50.9.1281

Ruiz-Lau, N., Medina, F. y Martínez, M. 2011, El chile habanero: su origen y usos. Ciencia. Julio-Septiembre: 70-77.

Sakuraba, Y., Kanno, S., Mabuchi, A., Monda, K., Iba, K. y Yanagisawa, S. 2018. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition. Nature plants. 4: 1089-1101. https://dx.doi.org/10.1038/s41477-018-0294-7

Sakuraba, Y., y Yanagisawa, S. 2017. Light signalling-induced regulation of nutrient acquisition and utilisation in plants. Seminars in Cell & Developmental Biology. 83: 123-132. https://doi.org/10.1016/j.semcdb.2017.12.014

Samuolienė, G., Sirtautas, R., Brazaitytė, A. y Duchovskis, P. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry. 134(3): 1494-1499. http://dx.doi.org/10.1016/j.foodchem.2012.03.061

SAS Institute (2002) SAS System for Windows Computer Program. Software Version 9.0. Cary, North Carolina, USA.

Singleton, V.L. y Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Society for Enology and Viticulture. 16: 144-158.

Trujillo, J.J.G. 2018. Caracterización de los recursos genéticos de Capsicum chinense Jacq. en la peninsula de Yucatán. En: Mejoramiento genético del chile habanero de la Península de Yucatán. T.A. González (ed.), pp 37-43. Centro de Investigación Científica de Yucatán. Mérida, México.

Verma, S.K., Gantait, S., Jeong, B.R. y Hwang, S.J. 2018. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Nature Scientific Reports. 8: 18009. https://doi.org/10.1038/s41598-018-36113-9

Wang, J., Lu, W., Tong, Y. y Yang, Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science. 7: 250. https://doi.org/10.3389/fpls.2016.00250

Wollanger, H.M. y Runkle, E.S. 2015. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience. 50(4): 522-529. https://doi.org/10.21273/HORTSCI.50.4.522

Yamori, W. 2016. Photosynthesis and respiration. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 141-149. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-801775-3.0009-3(LAI)

Published

2021-01-25

How to Cite

Mendoza Paredes, J. E., Castillo-González, A. M., Avitia-García, E., García-Mateos, M. del R., & Valdéz-Aguilar, L. A. (2021). Effect of different blue:red LED light ratios on habanero pepper (Capsicum chinense Jacq.) plants. Biotecnia, 23(1), 110–119. https://doi.org/10.18633/biotecnia.v23i1.1288

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.