Controlled preparation and chemical actuation of polyacrylonitrile fibers

Authors

  • J Aguila López Instituto Politécnico Nacional-UPIITA, Av. Instituto Politécnico Nacional 2580. Barrio Laguna Tico-mán, 07340. México D. F. https://orcid.org/0009-0004-5430-0479
  • M Sánchez Rivera Centro Tlaxcala de Biología de la Conducta. Universidad Autónoma de Tlaxcala. Km 1.5 Carretera Tlaxcala-Puebla S/N. La Loma Xicohténcatl, C.P. 90070, Tlaxcala, Tlaxcala.
  • JA Pescador Rojas Universidad Autónoma del Estado de Hidalgo. Escuela Superior de Apan. Carretera Apan-Calpulalpan km. 8, Col. Chimalpa, C.P. 43920 Apan, Hidalgo, México.
  • M Flores González Instituto Politécnico Nacional-CIBA, San Juan Molino Km 1.5 de la Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, Tlaxcala, 90700 México.
  • J Diaz Reyes Instituto Politécnico Nacional-CIBA, San Juan Molino Km 1.5 de la Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, Tlaxcala, 90700 México.
  • JF Sánchez Ramírez Instituto Politécnico Nacional-CIBA, San Juan Molino Km 1.5 de la Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, Tlaxcala, 90700 México.

DOI:

https://doi.org/10.18633/biotecnia.v25i3.2122

Keywords:

Microfabrication; Microfiber; Polyacrylonitrile; Chemical Actuation

Abstract

Pure polyacrylonitrile (PAN) fibers with diameter size at micrometric scale were obtained and collected radially using an immersion-jet wet spinning .system. This technique is a fast and easy approach to fabricate micrometric PAN fibers. The diameter of the fiber can be easily controlled by adjusting the size of the spinneret. Uniform, smooth and continuous PAN microfibers were suitable modified by thermal stabilization and alkaline saponification to obtain pH-sensitive fibers. The effect of diameter size fiber on the chemical actuation behavior was investigated in terms of length change characteristics under the influence of pH solution. The microfibers showed expanding/contracting behavior and force generation stimulated by changes in the environment pH. The fibers structural and chemical properties were characterized using the FT-IR spectroscopy and SEM microscopy techniques.

Downloads

Download data is not yet available.

References

Brandrup, J. y Peebles, L. H., (1968). On the chromophore of polyacrylonitrile. IV. thermal oxidation of polyacrylonitrile and other nitrile-containing compounds. Macromolecules. 1(1), 64–72. DOI: https://doi.org/10.1021/ma60001a012

Choe, K. y Kim, K. J., (2006). Polyacrylonitrile linear actuators: chemomechanical and elec-tro-chemomechanical properties. Sensors and Actuators A: Physical. 126(1), 165–172. DOI: https://doi.org/10.1016/j.sna.2005.09.008

Doi, M., Matsumoto, M. y Hirose, Y., (1992). Deformation of ionic polymer gels by electric fields. Macromolecules. 25(20), 5504–5511. DOI: https://doi.org/10.1021/ma00046a058

Farsani, R. E., Raissi, S., Shokuhfar, A. y Sedghi, A., (2009). FT-IR study of stabilized PAN fibers for fabrication of carbon fibers. International Journal of Mechanical and Mechatronics Engineering. 3(2), 161–164.

Feng, J., Zhang, C., Feng, J., Jiang, Y. y Zhao, N., (2011). Carbon aerogel composites prepared by am-bient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Applied Materials & Interfaces. 3(12), 4796–4803. DOI: https://doi.org/10.1021/am201287a

Frank, E., Hermanutz, F. y Buchmeiser, M. R., (2012). Carbon fibers: precursors, manufacturing, and properties. Macromolecular Materials and Engineering. 297(6), 493–501. DOI: https://doi.org/10.1002/mame.201100406

Friedlander, H. N., Peebles, L. H., Brandrup, J. y Kirby, J. R., (1968). On the chromophore of polyacry-lonitrile. VI. mechanism of color formation in polyacrylonitrile. Macromolecules. 1(1), 79–86. DOI: https://doi.org/10.1021/ma60001a014

Gu, S. Y., Ren, J. y Wu, Q. L., (2005). Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals. 155(1), 157–161. DOI: https://doi.org/10.1016/j.synthmet.2005.07.340

Kalashnik, A. T., Smirnova, T. N., Chernova, O. P. y Kozlov, V. V., (2010). Properties and structure of polyacrylonitrile fibers. Polymer Science Series A. 52(11), 1233–1238. DOI: https://doi.org/10.1134/S0965545X10110180

Lee, S. J., Lee, D. Y., Song, Y. S. y Cho, N. I., (2007). Chemically driven polyacrylonitrile fibers as a linear actuator. Solid State Phenomena. 124-126, 1197–1200. DOI: https://doi.org/10.4028/www.scientific.net/SSP.124-126.1197

Liu, H. C., Chien, A.-T., Newcomb, B. A., Liu, Y. y Kumar, S., (2015). Processing, structure, and prop-erties of lignin- and cnt-incorporated polyacrylonitrile-based carbon fibers. ACS Sustainable Chemistry & Engineering. 3(9), 1943–1954. DOI: https://doi.org/10.1021/acssuschemeng.5b00562

Liu, J.-J., Ge, H. y Wang, C.-G., (2006). Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. Journal of Applied Polymer Sci-ence. 102(3), 2175–2179. DOI: https://doi.org/10.1002/app.24256

Mahmod, D. S. A., Ismail, A. F., Mustafa, A., Ng, B. C. y Abdullah, M. S., (2011). Effect of the solvent type on the formation and physical properties of polyacrylonitrile fibers via a solvent-free coagula-tion bath. Journal of Applied Polymer Science. 121(4), 2467–2472. DOI: https://doi.org/10.1002/app.33796

Mirbaha, H., Arbab, S., Zeinolebadi, A. y Nourpanah, P., (2013). An investigation on actuation behavior of polyacrylonitrile gel fibers as a function of microstructure and stabilization temperature. Smart Materials and Structures. 22(4), 045019. DOI: https://doi.org/10.1088/0964-1726/22/4/045019

Papkov, D., Beese, A. M., Goponenko, A., Zou, Y., Naraghi, M., Espinosa, H. D., Saha, B., Schatz, G. C., Moravsky, A., Loutfy, R., Nguyen, S. T. y Dzenis, Y., (2012). Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano. 7(1), 126–142. DOI: https://doi.org/10.1021/nn303423x

Rahaman, M. S. A., Ismail, A. F. y Mustafa, A., (2007). A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability. 92(8), 1421–1432. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.03.023

Samatham, R., Park, I.-S., Kim, K. J., Nam, J.-D., Whisman, N. y Adams, J., (2006). Electrospun na-noscale polyacrylonitrile artificial muscle. Smart Materials and Structures. 15(6), N152—N156. DOI: https://doi.org/10.1088/0964-1726/15/6/N03

Schreyer, H. B., Gebhart, N., Kim, K. J. y Shahinpoor, M., (2000). Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules. 1(4), 642–647. DOI: https://doi.org/10.1021/bm005557l

Sedghi, A., Farsani, R. E. y Shokuhfar, A., (2008). The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties. Journal of Materials Processing Tech-nology. 198(1-3), 60–67. DOI: https://doi.org/10.1016/j.jmatprotec.2007.06.052

Shi, X.-L., Hu, Q., Wang, F., Zhang, W. y Duan, P., (2016). Application of the polyacrylonitrile fiber as a novel support for polymer-supported copper catalysts in terminal alkyne homocoupling reactions. Journal of Catalysis. 337, 233–239. DOI: https://doi.org/10.1016/j.jcat.2016.01.022

Shi, X.-L., Tao, M., Lin, H. y Zhang, W., (2014). Application of the polyacrylonitrile fiber as a support for the green heterogeneous base catalyst and supported phase-transfer catalyst. RSC Adv. 4(109), 64347–64353. DOI: https://doi.org/10.1039/C4RA12069H

Shiga, T. y Kurauchi, T., (1990). Deformation of polyelectrolyte gels under the influence of electric field. Journal of Applied Polymer Science. 39(1112), 2305–2320. DOI: https://doi.org/10.1002/app.1990.070391110

Sidorina, A. I. y Druzhinina, T. V., (2016). Macrostructure of polyacrylonitrile nanofibers produced by electrospinning. Fibre Chemistry. 47(5), 362–366. DOI: https://doi.org/10.1007/s10692-016-9693-6

Sreekumar, T. V., Liu, T., Min, B. G., Guo, H., Kumar, S., Hauge, R. H. y Smalley, R. E., (2004). Poly-acrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials. 16(1), 58–61. DOI: https://doi.org/10.1002/adma.200305456

Wang, P. H., Liu, J. y Li, R. Y., (1994). Physical modification of polyacrylonitrile precursor fiber: its effect on mechanical properties. Journal of Applied Polymer Science. 52(12), 1667–1674. DOI: https://doi.org/10.1002/app.1994.070521201

Wu, H.-l., Bremner, D. H., Li, H.-y., Shi, Q.-q., Wu, J.-z., Xiao, R.-q. y Zhu, L.-m., (2016). A novel multifunctional biomedical material based on polyacrylonitrile: preparation and characterization. Materials Science and Engineering: C. 62, 702–709. DOI: https://doi.org/10.1016/j.msec.2016.02.026

Yördem, O. S., Papila, M. y Menceloğlu, Y. Z., (2008). Effects of electrospinning parameters on poly-acrylonitrile nanofiber diameter: an investigation by response surface methodology. Materials & Design. 29(1), 34–44. DOI: https://doi.org/10.1016/j.matdes.2006.12.013

Zhao, R., Wang, Y., Li, X., Sun, B., Li, Y., Ji, H., Qiu, J. y Wang, C., (2016). Surface activated hydro-thermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chemistry & Engineering. 4(5), 2584–2592. DOI: https://doi.org/10.1021/acssuschemeng.6b00026

Additional Files

Published

2023-11-16

How to Cite

Aguila López, J., Sánchez Rivera, M., Pescador Rojas, J. A., Flores González, M., Díaz Reyes, J., & Sánchez Ramírez, J. F. (2023). Controlled preparation and chemical actuation of polyacrylonitrile fibers. Biotecnia, 25(3), 189–196. https://doi.org/10.18633/biotecnia.v25i3.2122

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.