Mexican natural clinoptilolite treated with silver for DDD removal from water

Authors

DOI:

https://doi.org/10.18633/biotecnia.v22i3.1308

Keywords:

natural clinoptilolite, kinetic of removal, adsorption isotherms, dichlorodiphenyl dichloroethane, silver.

Abstract

The capability of a natural clinoptilolite to remove DDD in function of the temperature and variation of silver concentration was studied. The MEB-EDX and BET tech­niques analyzed the natural and modified samples. By kinetic tests, it was found that equilibrium occurred at 180 minutes of contact and that silver increases the removal efficiency. The process displayed a chemisorption kinetic, since it was adjusted to the pseudo second-order model and the coef­ficients of determination varied in a range from 0.9933 to 0.9997. By the adsorption isotherms, the maximum adsorbed concentration was obtained at 0.19 mg/g. The data fit per­fectly to the Langmuir model, in which a decrease was ob­served in constant b, related to the adsorption energy, when there was an increase in temperature. The latter indicates a decrease in adsorption at high temperatures, with the order of adsorption being 25° C> 35° C> 45° C. It is concluded that the process is exothermic, since the adsorption was greater when the temperature lowered, corroborated by the calcula­tion of the thermodynamic parameters (ΔH °, ΔG ° and ΔS °).

Downloads

Download data is not yet available.

Author Biographies

Juana Alvarado Ibarra, Universidad de Sonora

Técnico Académico en el Departamento de Investigación en Polímeros y Materiales. Colaborador académico del núcleo complementario del posgrado en sustentabilidad.

Karla Terán-Samaniego, Estudiante de la maestría en sustentabilidad, Departamento de Ingeniería Industrial, Universidad de Sonora

Ingeniera Industrial y de Sistemas, 2002, de la Universidad de Sonora. Especialidad en Desarrollo Sustentable, 2014, de la Universidad de Sonora. Maestría en Sustentabilidad, de la Universidad de Sonora. Actualmente estudiante de Doctorado en Desarrollo Regional del Centro de Investigación en Alimentación y Desarrollo CIAD de Hermosillo, Sonora, México.

Diana Vargas-Hernández, Cátedra Conacyt- DIPM-UNISON

Investigador de cátedra conacyt en la Universidad de Sonora.

Ana Laura Bautista Olivas, Departamento de Agricultura y Ganadería de la Universidad de Sonora

References

Al-Haj, A.A. y El-Bastawi, R. 1997. Removal of lead and nickel ions using zeolites tuff. Journal of Chemical Technology and Biotechnology. 69: 27-34.
Alvarado, J., Sotelo, M., Meza, D., Maubert, M. y Paz, F.A. 2013. Evaluación de la Potencialidad de una chabasita natural mexicana en la remoción de plomo en agua. Revista Internacional de Contaminación Ambiental. 29 (2): 201-210.
Alpat, S.K., Özbairak, Ö., Alpat, S. y Akcay, H. 2008. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. Journal of Hazardous Materials. 151: 213-220.
Ananpattarachai, J. y Kajitvichyanukul, P. 2015. Photocatalytic degradation of p, p´-DDT under UV visible light using interstitial N-doped TiO2. Journal of Environmental Science and Health, Part B. 50 (4): 247-260.
Asgari, G., Rahmani, A.R., Askari, F.B. y Godini K. 2012. Catalytic Ozonation of Phenol Using Copper Coated Pumice and Zeolite as Catalysts. Journal of Research in Health Sciences. 12(2): 93-97.
Ashrafizadeh, S.N., Khorasani, Z. y Gorjiara, M. 2008. Ammonia removal from aqueous solutions by Iranian natural zeolite. Separation Science and Technology. 43: 960-978.
ATSDR. Toxicological Profile for DDT, DDE and DDD. Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services. Public Health Service [Consultado 2 junio 2020] 2016. Disponible en: https://www.atsdr.cdc.gov/es/phs/es_phs35.html
Babel, S., y Kurniawan, T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97: 219-243.
Bajwa, A., Ali, V., Mahmood, A., Chaudhry, M.J.I., Syed, J., Li, J., Zhang, G., Jones, K.C. y Malik, R.N. 2016. Organochlorine pesticides (OCPs) in the Indus River catchment area. Pakistan: Status, soil-air exchange and black carbon mediated distribution. Chemosphere.152: 292-300.
Bilgin, E., Özdemir, E. y Beker, U., 2013. Zeolite aupported mono- and bimetallic oxides: Promising adsorbentes for removal of As(V) in aqueous solutions. Chemical Engineering Journal. 220: 402-411.
Cabrera, C., Gabaldon, C., y Marzal, P. 2005. Sorption characteristics of heavy metal ions by a natural zeolite. Journal of Chemical Technology and Biotechnology. 80: 477-481.
Capasso, S., Coppola, E., Iovino, P., Salvestrini, S. y Colella, C. 2007. Sorption of humic acids on zeolitic tuffs. Microporous and Mesoporous Materials. 105: 324-328.
Carrillo-Pérez, E., Ruiz-Manríquez, A. y Yeomans-Reina, H. 2004. Aislamiento, identificación y evaluación de un cultivo mixto de microorganismos con capacidad para degradar DDT. Revista Internacional de Contaminación Ambiental. 20(2): 69-75.
Castro, J. y Díaz, M.L. 2004. Avances del convenio de Estocolmo en México. Las sustancias tóxicas persistentes en México. Comp. Adrián Fernández Bremauntz, Mario Yarto Ramírez y José Castro Díaz. Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología. (1ª ed.), pp 33-43. México.
Cha, K.M., Lee, E.S., Kim, I.W., Cho, H.K., Ryu, J.H. y Kim, S.K. 2016. Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract. Journal of Ginseng Research 40(3): 292-299.
Cincotti, A., Mameli, A., Locci, A.M., Orru, R. y Cao, G.H. 2006. Heavy metals uptake by sardinian natural zeolites: experiment and modeling. Industrial and Engineering Chemistry Research. 45: 1074-1084.
Díaz-Barriga, F., López, D., Pérez, I.N., Batres, L.E. y Yáñez, L. 2004. Evaluación del riesgo para las sustancias tóxicas persistentes. Las sustancias tóxicas persistentes en México. Comp. Adrián Fernández Bremauntz, Mario Yarto Ramírez y José Castro Díaz. Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología. (1ª ed.). pp 233-243. México.
Domene M. Contaminantes Orgánicos Persistentes (COPs), la nocividad que no cesa. Seguridad y Salud Laboral. [Consultado 2 junio 2020] 2012. Disponible en: http://archivosseguridadlaboral-manueldomene.blogspot.com/2012/01/contaminantes-organicos-persistentes.html
Du, Q., Liu, S., Cao, Z. y Wang, Y. 2005. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology. 44: 229-234.
Gaspar, F.W., Chevrier, J., Bornman, R., Crause, M., Obida, M., Barr, D.B., Bradman, A., Bouwman, H. y Eskenazi, B. 2016. Corrigendum “Undisturbed dust as a metric of long-term indoor insecticide exposure: Residential DDT contamination from indoor residual spraying and its association with serum levels in the VHEMBE cohort” [Environ. Int. 85C (2015) 163-167]. Environmental International. 94: 778-783.
Giannetto, G. 2000. Características, propiedades y aplicaciones industriales. Zeolitas. Ed. Innovación Tecnológica. Caracas, Venezuela.
Gupta, V.K. y Ali, I. 2001. Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Research. 35: 33-40.
Hameed, B.H., Tan, I.A.W., Ahmad, A.L. 2008. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal. 144(2): 235-344.
Hernández, M.A., Rojas, F., Lara, V.H., Portillo, R., Castelán R., Pérez G. y Salas, R. 2010. Estructura porosa y propiedades estructurales de mordenita y clinoptilolita. Superficies y Vacío. 23(S): 51-56.
Ho, Y.S. y McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34: 451-465.
Jiménez, M.J. 2004. Caracterización de Minerales Zeolíticos mexicanos. Tesis para obtener el título de ingeniero químico. Universidad Autónoma del Estado de México.
Jiménez-Cedillo, M., Olguín, M. y Fall, C. 2009. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs. Journal of Hazardous Materials. 163(2-3): 939-945.
Jürgens, M.D., Crosse, J., Hamilton, P.B., Johnson, A.C. y Jones, K.C. 2016. The long shadow of our chemical past – High DDT concentrations in fish near a former agrochemical factory in England. Chemosphere. 162: 333-344.
Kavitha, D. y Namasivayam, C. 2007. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology. 98(1):14-21.
Kehinde, F.O. y Aziz, H.A. 2016. Classical optimization of process variables in the treatment of real textile wastewater using clinoptilolita. Journal of Environmental Chemical Engineering. 4: 1242-1247.
Lagergren, S.Y. 1898. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Handlingar, 24(4): 1-39.
Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. part I solids. Journal of the American Chemical Society. 38: 2221-2295.
Leyva-Ramos, R., Aguilar-Armenta, G., González-Gutiérrez, L., Guerrero-Coronado, R.M. y Mendoza Barrón, J. 2004. Ammonia exchange on clinoptilolite from mineral deposits located in Mexico. Journal of Chemical Technology and Biotechnology. 79: 651-657.
Leyva-Ramos, R., Medellin-Castillo, N.A., Guerrero-Coronado, R.M., Berber Mendoza, M.S., Aragón-Piña A. y Jacobo-Azuara, A. 2005. Intercambio iónico de plata (I) en solución acuosa sobre clinoptilolita. Revista Internacional de Contaminación Ambiental. 21(4): 193-200.
Lohman, R., Breivik, K., Dachs, J. y Muir, D. 2007. Global fate of POPs: current and future research directions. Environmental Pollution. 150(1): 150-165.
Matache, M.L., Hura, C. y David, I.G. 2016. Non-invasive monitoring of organohalogen compounds in eggshells and feathers of birds from the Lower Prut Floodplain Natural Park in Romania. Procedia Environmental Sciences. 32: 49-58.
Murillo, Y.S., Giraldo, L. y Moreno, J.C. 2011. Determinación de la cinética de adsorción de 2,4-dinitrofenol en carbonizado de hueso bovino por espectrofotometría UV-VIS. Revista Colombiana de Química. 40(1): 91-103.
Nightingale, E.R. 1959. Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry. 63(9): 1381-1387.
Orozco-Borbón, M.V., de la Rosa-Vélez, J., Ramírez-Álvarez, N., Macías-Zamora, V., Gutiérrez-Galindo, E.A. y Muñoz-Barbosa, A. 2008. DDT en sedimentos de la costa noroccidental de Baja California (México) y su biotransformación por Vibrio sp. Ciencias Marinas. 34(4): 419-432.
Pang, W., Gao, N.Y. y Xia, S. 2010. Removal of DDT in drinking water using nanofiltration process. Desalination. 250: 553-556.
Park, J.H., Cha, E.S., Ko, Y., Hwang, M.S., Hong, J.H. y Lee, W.J. 2014. Exposure to Dichlorodiphenyltrichloroethane and the Risk of Breast Cancer: A Systematic Review and Meta-analysis. Osong Public Health Research Perspectives. 5 (2): 77-84.
Polanco, A.G., Navarro, J.A., Solorio, J., Mena, G.J., Marrufo, J. y Del Valls, T.A. 2015. Contamination by organochlorine pesticides in the aquifer of the Ring of cenotes in Yucatán, México. Water and Environmental Journal. 29: 140-150.
Qiu, X., Zhu, T., Li, J., Pan, H., Li, Q., Miao, G. y Gong, J. 2004. Organochlorine pesticides in the air around the Taihu Lake, China. Environmental Science and Technology. 38(5): 1368-1374.
Ribeiro, T., Rubio, J. y Smith, R., 2003. A dried hydrophobic aquaphyte as on oil filter oil/water emulsions. Spill Science and Technology Bulletin. 8(5-6): 483-489.
Rozic, M., Cerjan-Stefanovic, S., Kurajica, S., Vancina, V. y Hodzic, E. 2000. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Research. 34: 3675-3681.
Sprynskyy, M., Buszewski, B., Terzyk, A.P. y Namiesnik, J. 2006. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science. 304(1): 21-28.
Suzuki, T. y Okuhara, T. 2001. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution. Microporous and Mesoporous Materials. 43(1): 83-89.
Thomas, J.E. y Gohil, H. 2011. Microcosm studies on the degradation of o,p’-and p,p’-DDT, DDE and DDD in a muck soil. World Journal of Microbiology and Biotechnology. 27(3): 619-625.
Tschernich, R.W. 1992. Zeolites of the World. Geoscience Press, Phoenix, Ariz., EUA.
Tsitsishvili, G.V., Andronikashvili, T.G., Kirov, G.N. y Filizova, L.D. 1992. Natural Zeolites. Ellis Horwood, Chichester.
Tsygankov, V.Y. y Boyarova, M.D. 2015. Sample Preparation Method for the Determination of Organochlorine Pesticides in Aquatic Organisms by Gas Chromatography. Achievements in the Life Sciences. 9: 65-68.
Turusov, V., Rakitsky, V. y Tomatis, L. 2002. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence and risks. Environmental Health Perspectives. 110(2): 125-128.
Vaca, M., López, R., Gehr, R., Jiménez, B.E. y Álvarez, P. 2001. Heavy metal removal with mexican clinoptilolite: multi-component ionic Exchange. Water Research. 35(2): 373-378.
Venier, M., e Hites, R.A. 2014. DDT and HCH, two discontinued organochlorine insecticides in the Great Lakes region: Isomer trends and sources. Environmental International 69:159-165.
Wang, H., Tian, H. y Hao, Z. 2012. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature. Journal of Environmental Sciences 24(3): 536-540.
Wang, S. y Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal. 156(1): 11-24.
Wang, S.B. y Zhu, Z.H. 2006. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. Journal of Hazardous Materials. 136: 946-952.
Weber, M.A., Barbaruck, K.A. y Westfall, D.G. 1983. Ammonium adsorption by a zeolite in a static and dynamic system. Journal of Environmental Quality. 12(4): 549-552.
Weiss, P.T., LeFevre, G. y Gulliver, J.S. Contamination of soil and Groundwater Due to Stormwater infiltration Practices. [Consultado 5 junio 2020] 2008. Disponible en:
https://pdfs.semanticscholar.org/702d/527bbb1b622f448691d016ab5bc5657941f2.pdf?_ga=2.215329623.1108367914.1591409512-190085627.1591409512
Xing, Y.N., Guo, Y., Xie, M., Shen, R.L. y Zeng, E.Y. 2009. Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device: first report of p,p´-DDMU in water column. Environmental Pollution 157: 1382-1387.
Zheng, Y., Walker, H. and Zhu, Q. 2017. Reduction of nitrate by Na Y zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. Journal of Hazardous Materials. 324: 605-616.
Ziv, A. 2009. Biodegradación de compuestos orgánicos persistentes (COP): I. El caso de los bifenilos policlorados (PCB). Acta Biológica Colombiana 14(1): 57-88.
Zhou, Q., Wang, J., Meng, B., Cheng, J., Lin, G., Chen, J., Zhen, D. y Yu, Y. 2013. Distribution and sources of organochlorine pesticides in agricultural soils from central China. Ecotoxicology and Environmental Safety. 93: 163-170. 

Published

2020-09-23

How to Cite

Alvarado Ibarra, J., Terán-Samaniego, K., Vargas-Hernández, D., & Bautista Olivas, A. L. (2020). Mexican natural clinoptilolite treated with silver for DDD removal from water. Biotecnia, 22(3), 146–155. https://doi.org/10.18633/biotecnia.v22i3.1308

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.