Effect of agro-industrial by-products addition on the physical properties of a starch-gelatin bioplastic

Authors

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1324

Keywords:

By-product, Biopolymer, Physical properties

Abstract

This study reports the effect of mango, jamaica and coffee by-products addition into formulation of starch-gelatin for elaborating a spoon-shaped bioplastic. Such additions improved the bioplastics mechanical properties due to the compatibility of their components, observed at microscopic level (hardness was increased in a range of 190 to 290 N). In the same way, the bioplastics physical properties such as the hue angle values (63-89), solubility and absorp­tion index, were modified with the by-product’s addition. To obtain the spoon-shaped bioplastics conditions of maximum stability (aw≈0.4) at 35 °C, we employ the GAB equation and the moisture content corresponding to micropore volume. The different formulations exhibited an endothermic event at 180ºC, associated with a melting process, as well as a high degradation rate in soil after 120 h. The by-products proved to be a reinforcement in the bioplastics formulation. The use of by-products of mango, coffee and jamaica represent an in­teresting alternative to increase their technological potential.

Downloads

Download data is not yet available.

References

Abarca, D., Martínez, R., Muñoz, J., Torres, M., y Vargas, G., 2010. Residuos de Café, Cacao y Cladodio de Tuna: Fuentes Promisorias de Fibra Dietaria. Revista Tecnológica-ESPOL, 23(2):63-69.

Al-Muhtaseb, A., Mcminn, W., y Magee, T. 2004. Water sorption isotherm of starch powders Part 1: Mathematical description of experimental data. Journal of Food Engineering. 61(3):297-307.

Aranda, F. J., González, R., Jasso, C. F., y Mendizábal, E. 2015. Water absorption and thermomechanical characterization of extruded starch/poly (lactic acid)/agave bagasse fiber bioplastic composites. International Journal of Polymer Science, 2015: 1-7.

Ashori, A., y Nourbakhsh, A. 2010. Bio-based composites from waste agricultural residues. Waste Management, 30(4): 680- 684.

ASTM. 2005. Standard test method for plastics. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA.

Avérous, L. y Boquillon, N. 2004. Biocomposites based on plasticized starch: thermal and mechanical behaviors. Carbohydrate Polymer. 56:111-122.

Azuara-Nieto, E., y Beristain-Guevara, C. I. (2007). Estudio termodinámico y cinético de la adsorción de agua en proteína de suero de leche. Revista Mexicana de Ingeniería Química, 6(3), 359-365.

Beninca, C., Demiate, I. M., Lacerda, L. G., Carvalho Filho, M. A. D. S., Ionashiro, M., y Schnitzler, E. 2008. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 C. Eclética Química, 33(3), 13-18.

Bertuzzi, M. A., Armada, M., y Gottifredi, J. C. 2007. Physicochemical characterization of starch-based films. Journal of Food Engineering, 82(1): 17-25.

Brizga, J., Hubacek, K., y Feng, K. (2020). The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth, 3(1), 45-53.

Brunauer, S., Deming, L. S., Deming, W. E., y Teller, E. 1940. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.

Curvelo, A., De Carvalho, A., Agnelli, J. 2001. Thermoplastic starch–cellulosic fibers composites: Preliminary results. Carbohydrate Polymers. 45:183-188.

De Carvalho, G. R., Marques, G. S., de Matos Jorge, L. M., y Jorge, R. M. M. (2018). Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films. Journal of Applied Polymer Science, 47224.

Franco, C., Cyras, V., Busalmen, J., Ruseckaite, R. y Vázquez, A. 2004. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86:95-103.

García-Gurrola, A., Rincón, S., Escobar-Puentes, A. A., Zepeda, A., y Martínez-Bustos, F. 2019. Microencapsulation of red sorghum phenolic compounds with esterified sorghum starch as encapsulant materials by spray drying. Food Technology and Biotechnology, 57(3), 341.

Gáspar, M., Benkó, Z., Dogossy, G., Réczey, K., y Czigány, T. 2005. Reducing water absorption in compostable starch-based plastics. Polymer Degradation and Stability. 90:563-569.

Gounavé, F., Marais, S., Bessadok, A., Lan Gevin, D., Morvan, C., y Métayer, M. 2006. Study of water sorption in modified flax fibers. Journal of Applied Polymer Science. 101:4281-4289.

Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymer. 45:253-267.

Imam, S. H., Cinelli, P., Gordon, S. H., y Chiellini, E. 2005. Characterization of biodegradable composite films prepared from blends of poly (vinyl alcohol), cornstarch, and lignocellulosic fiber. Journal of Polymers and the Environment. 13(1):47-55.

Imam, S., Gordon, S., Shogren, R., Tosteson, T., Govind, N. y Greene, R. 2000. Degradation of starch-poly(b-hydroxybutyrate-co-b-hydroxvalerate) bioplastic in tropical coastal waters. Applied and Environmental Microbiology. 65:431-437.

Jumaidin, R., Khiruddin, M. A. A., Saidi, Z. A. S., Salit, M. S., y Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746-755.

Kaisangsri, N., Kerdchoechuen, O., y Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77.

Krishnamurthy, A., y Amritkumar, P. (2019). Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Applied Sciences, 1(11), 1432.

Kuakpetoon, D., y Wang. Y. 2008. Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydrate Research. 343:90-100.

López‐Velázquez, J. C., Rodríguez‐Rodríguez, R., Espinosa‐ Andrews, H., Qui‐Zapata, J. A., García‐Morales, S., Navarro‐ López, D. E., y Luna-Barcénas, G., Vassallo‐Brigneti, E. T. y García‐Carvajal, Z. Y. (2019). Gelatin–chitosan–PVA hydrogels and their application in agriculture. Journal of Chemical Technology & Biotechnology, 94(11), 3495-3504.

Lubis, M., Gana, A., Maysarah, S., Ginting, M. H. S., y Harahap, M. B. 2018. Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer. IOP Conference Series: Materials Science and Engineering. 309:012100.

Lucas, N., Bienaime, C. and Belloy, C. 2008. Polymer biodegradation: Mechanisms and estimation techniques - A review, Chemosphere. 73(4):429-442.

McNutt, J. (2019). Spent coffee grounds: A review on current utilization. Journal of industrial and engineering chemistry, 71, 78-88.

Maldonado, Y., Jiménez, J., Arámbula, G., Flores, V., Álvarez, P., Ramírez, M., y Salazar, R. 2019. Effect of water activity on extractable polyphenols and some physical properties of Hibiscus sabdariffa L. calyces. Journal of Food Measurement and Characterization. 13(1):687-696.

Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., y Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386.

Mayo-Mayo, G., Navarrete-García, A., Maldonado-Astudillo, Y. I., Jiménez-Hernández, J., Santiago-Ramos, D., Arámbula- Villa, G., Álvarez-Fitz, P., Ramírez, M. y Salazar, R. (2020). Addition of roselle and mango peel powder in tortilla chips: a strategy for increasing their functionality. Journal of Food Measurement and Characterization, 14, 1511-1519.

Navia, D., Ayala, A. y Villada, H. 2011. Adsorption isotherms of cassava flour bioplastics compression molded. Biotecnología en el Sector Agropecuario y Agroindustrial. 9(1):77-87.

Moro, T. M., Ascheri, J. L., Ortiz, J. A., Carvalho, C. W., y Meléndez- Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology, 10(10), 1798-1808.

Peng, G., Chen, X., Wu, W., y Jiang, X. 2007. Modeling of water sorption isotherm for corn starch. Journal of Food Engineering, 80(2):562-567.

Quirijns, E. J., van Boxtel, A. J., van Loon, W. K., y van Straten, G. 2005. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture. 85(11):1805-1814.

Rodríguez, W., Flores, J., Martınez, F., Chinas, F., Espinoza, F. 2014. Nanomechanical properties and thermal stability of recycled cellulose reinforced starch–gelatin polymer composite. The Journal of Applied Polymer Science. 132(4).

Santillán-Moreno, A., Martínez-Bustos, F., Castaño-Tostado, E., y Amaya-Llano, S. L. (2011). Physicochemical characterization of extruded blends of corn starch–whey protein concentrate–Agave tequilana fiber. Food and Bioprocess Technology, 4(5), 797-808.

Syamani, F. A., Pramasari, D. J., Kusumaningrum, W. B., Kusumah, S. S., Masruchin, N., Ermawati, R., y Cahyaningtyas, A. A. (2020). Characteristics of Bioplastic Made from Cassava Starch Filled with Fibers from Oil Palm Trunk at Various Amount. E&ES, 439(1), 012035.

Torres, F. G., Mayorga, J. P., Vilca, C., Arroyo, J., Castro, P., y Rodriguez, L. (2019). Preparation and characterization of a novel starch–chestnut husk biocomposite. SN Applied Sciences, 1(10), 1158.

Väisänen, T., Haapala, A., Lappalainen, R., y Tomppo, L. 2016. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management. 54:62-73.

Velásquez, S., Pelaéz, G., Giraldo, D. 2016. Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico (Colombia). 80(1):77-86.

Williamson, K., y Hatzakis, E. (2019). NMR analysis of roasted coffee lipids and development of a spent ground coffee application for the production of bioplastic precursors. Food Research International, 119, 683-692.

Worgull, M. 2009. Molding Materials for Hot Embossing. En: Hot Embossing: Theory and Technology of Microreplication. William Andrew (ed.), pp 57-112, Oxford, UK.

Xu, Y. y Hanna, M. 2005. Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene adipate-co-terephthalate). Carbohydrate Polymer. 59:521-529.

Yang, J., Ching, Y. C., y Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751.

Wang, Y., y Zhang, L. (2009). In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 129- 161). New Jersey: Wiley. Part I, Chapter 6.

Wang, W., Wang, H., Jin, X., Wang, H., Lin, T., y Zhu, Z. (2018). Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer, 153, 643-652.

Published

2021-01-21

How to Cite

Salazar López, R., Francisco Ponce, B. A. ., Vidal Silva, I. M. ., Maldonado Astudillo, Y. I. ., Jiménez Hernández, J. ., Flores Casamayor, V. ., & Arámbula Villa, G. . (2021). Effect of agro-industrial by-products addition on the physical properties of a starch-gelatin bioplastic. Biotecnia, 23(1), 52–61. https://doi.org/10.18633/biotecnia.v23i1.1324

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

You may also start an advanced similarity search for this article.