Influence of swine wastewater separation into solid and liquid fractions, on methane production with granular and disperse sludge

Authors

  • Marisol Valdez
  • Yesenia Bobadilla
  • Refugio Garcia
  • Claudia Martinez
  • Luis Humberto Alvarez Valencia Instituto Tecnológico de Sonora

DOI:

https://doi.org/10.18633/biotecnia.v24i1.1537

Keywords:

swine wastewater, methane, solid separation, granular sludge, disperse sludge

Abstract

In most cases, the current strategies to treat swine effluents in Mexico are not efficient, resulting in the discharge of partially treated wastewater, wasting an energy resource. This study aimed to evaluate the impact of the solid-liquid separation of swine wastewater on methane production using granular (GS) and disperse sludge (DS), under three concentrations. The COD concentration in the raw effluent (RE) was 13,640 mg/L, which corresponds up to 69 % to the solid fraction (SF) and the remaining to the liquid fraction (LF). The results indicate that the cultures with the SF produced the higher cumulative methane, increasing 1.47-, 1.31-, and 1.22-times in retaliation to the RE, at 3, 6, and 9 g VSS/L of DS. The solid-liquid separation strategy resulted in a higher methane production, evidenced by the amount of methane obtained by the SF and LF, which was 2.14- and 2.28-times higher than the obtained by the RE. The application of anaerobic processes to treat solid and liquid wastes will allow to recovery efficiently the energy from the transformation of organic matter into methane.

Downloads

Download data is not yet available.

References

Alvarez, L.H., García-Reyes, R.B., Ulloa-Mercado, R.G., Arellano Gil, M., García-González, A., 2019. Potencial biotecnológico para la valorización de residuos generados en granjas porcinas y cultivos de trigo. Entreciencias 7, 1–21.

APHA, 2005. Standard Methods for Examination of Water and Wastewater.

Barker, J.C., Zublena, J.P., 1996. Livestock manure nutrient assessment in North Carolina. North Carolina.

Baştabak, B., Koçar, G., 2020. A review of the biogas digestate in agricultural framework. J. Mater. Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01056-9

Boursier, H., Béline, F., Paul, E., 2005. Piggery wastewater characterisation for biological nitrogen removal process design. Bioresour. Technol. 96, 351–358. https://doi.org/10.1016/J.BIORTECH.2004.03.007

Boxall, A.B.A., Kolpin, D.W., Halling-Sørensen, B., Tolls, J., 2003. Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 37, 286A-294A.

Cervantes, F.J., Saldívar, J., Yescas, J.F., 2007. Estrategias para el aprovechamiento de desechos porcinos en la agricultura. Rev. Latinoam. Recur. Nat. 3, 3–12.

Cestonaro do Amaral, A., Kunz, A., Radis Steinmetz, R.L., Scussiato, L.A., Tápparo, D.C., Gaspareto, T.C., 2016. Influence of solid–liquid separation strategy on biogas yield from a stratified swine production system. J. Environ. Manage. 168, 229–235. https://doi.org/10.1016/j.jenvman.2015.12.014

Cioabla, A.E., Ionel, I., Dumitrel, G.A., Popescu, F., 2012. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 5. https://doi.org/10.1186/1754-6834-5-39

Dourmad, J.Y., Ryschawy, J., Trousson, T., Bonneau, M., Gonzàlez, J., Houwers, H.W.J., Hviid, M., Zimmer, C., Nguyen, T.L.T., Morgensen, L., 2014. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment. Animal 8, 2027–2037. https://doi.org/10.1017/S1751731114002134

FIRA, 2020. Panorama Agroalimentario: Carne de Cerdo.

Fitzpatrick, J.A., Roam, G.D., You, B.T., 1989. Anaerobic microbial aggregation and model development of a UASBR, in: Symposium on Anaerobic Digestion. Taipei, Taiwan, pp. 15–18.

Garzón-Zúñiga, M.A., Buelna, G., 2014. Caracterización de aguas residuales porcinas y su tratamiento por diferentes procesos en México. Rev. Int. Contam. Ambient. 30, 65–79.

Hanselman, T.A., Graetz, D.A., Wilkie, A.C., 2003. Manure-borne estrogens as potential environmental contaminants: a review. Environ. Sci. Technol. 37, 5471–8.

Hulshoff Pol, L., 1989. The phenomenon of granulation of anaerobic sludge. Wageningen University, Wageningen.

Kaparaju, P., Rintala, J., 2013. Generation of heat and power from biogas for stationary applications: Boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells, in: The Biogas Handbook: Science, Production and Applications. Elsevier Inc., pp. 404–427. https://doi.org/10.1533/9780857097415.3.404

Kebede-Westhead, E., Pizarro, C., Mulbry, W.W., 2006. Treatment of swine manure effluent using freshwater algae: Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J. Appl. Phycol. 18, 41–46. https://doi.org/10.1007/s10811-005-9012-8

Rico, C., Rico, J.L., García, H., García, P.A., 2012. Solid - Liquid separation of dairy manure: Distribution of components and methane production. Biomass and Bioenergy 39, 370–377. https://doi.org/10.1016/j.biombioe.2012.01.031

Tomei, M.C., Braguglia, C.M., Cento, G., Mininni, G., 2009. Modeling of Anaerobic Digestion of Sludge. Crit. Rev. Environ. Sci. Technol. 39, 1003–1051. https://doi.org/10.1080/10643380801977818

Van Epps, A., Blaney, L., 2016. Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Curr. Pollut. Reports. https://doi.org/10.1007/s40726-016-0037-1

van Lier, J.B., van der Zee, F.P., Frijters, C.T.M.J., Ersahin, M.E., 2015. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev. Environ. Sci. Biotechnol. https://doi.org/10.1007/s11157-015-9375-5

Vanotti, M.B., Ro, K.S., Szogi, A.A., Loughrin, J.H., Millner, P.D., 2018. High-Rate Solid-Liquid Separation Coupled With Nitrogen and Phosphorus Treatment of Swine Manure: Effect on Water Quality. Front. Sustain. Food Syst. 2, 49. https://doi.org/10.3389/fsufs.2018.00049

Wang, K., Mao, H., Wang, Z., Tian, Y., 2018. Succession of organics metabolic function of bacterial community in swine manure composting. J. Hazard. Mater. 360, 471–480. https://doi.org/10.1016/j.jhazmat.2018.08.032

Yang, D., Deng, L., Zheng, D., Liu, G., Yang, H., Wang, L., 2015. Separation of swine wastewater into solid fraction, concentrated slurry and dilute liquid and its influence on biogas production. Fuel 144, 237–243. https://doi.org/10.1016/J.FUEL.2014.12.044

Published

2022-02-23

How to Cite

Valdez, M., Bobadilla, Y., Garcia, R., Martinez, C., & Alvarez Valencia, L. H. (2022). Influence of swine wastewater separation into solid and liquid fractions, on methane production with granular and disperse sludge. Biotecnia, 24(1), 107–115. https://doi.org/10.18633/biotecnia.v24i1.1537

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.