Evaluation of edible chitosan, agar and thyme films to maintain the quality of ‘Hass’ avocado fruits during storage

Authors

  • Tomas J Madera-Santana Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, 83304, México.
  • Victor M Toledo-López Tecnológico Nacional de México/Instituto Tecnológico de Mérida
  • Karla Martinez-Robison Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, 83304, México
  • Victor Rejón-Moo Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Mérida, Yucatán, México
  • Judith Fortiz Hernández Centro de Investigación y Desarrollo, A.C.

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1728

Keywords:

Edible coatings, chitosan, thyme, films, shelf-life

Abstract

In this work, edible films (PCs) based on chitosan (Q), agar (A) and thyme oil (T) were prepared in four different formulations (Q, A, QA and QAT), and their mechanical properties (tension and elongation at break) and water vapor permeability were evaluated. Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also performed. The QA and QAT PCs stood out for their tensile strength, transparency, water vapor transmission rate and permeance, as well as the highest antioxidant activity. The effect of the application of the edible coatings (RCs) of QA and QAT on the quality of 'Hass' avocado fruit was evaluated during 13 days of storage at 25 °C. The following variables were evaluated periodically: weight loss, respiration rate, ethylene production, visual appearance, and rotting. The application of RCs to the fruit reduced their weight loss and extended their shelf life. The RCs gave the fruit a barrier to water vapor, reducing weight loss by 40 with respect to the control. In addition, the incidence of fruit rots was reduced.

Downloads

Download data is not yet available.

References

Aguilar-Méndez, M., San Martin-Martínez, E., Cruz-Orea, T. y Jaime-Fonseca, M. 2008. Gelatine starch films: Physicochemical properties and their application in extending the postharvest shelf life of avocado (Persea americana). Journal of the Science of Food and Agriculture. 88(2):185-193. doi:10.1002/jsfa.3068.

Arpaia, M. 2009. Manual internacional de la calidad del aguacate. Pub. 25. Postharvest Technology Center. University of California, Davis CA. http://postharvest.ucdavis.edu.

Adiletta G., Di Mateo M. y Petriccione, M. 2021. Multifunctional role of chitosan edible coating on antioxidant systems in fruit crops: A Review. International Journal of Molecular Sciences 22:2633. doi:10.3390/ijms22052633.

Al-Tayyar N.A., Youssef A.M. y Al-Hindi R.R. 2020. Edible coating and antimicrobial nanoemulsions for enhancing shelf life and reducing food borne pathogens of fruits and vegetables a review. Sustainable Materials and Technologies 40,20 p.e00215.

Altiok D., Altiok E. y Tihminlioglu, F. 2010. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing. Journal of Materials Science: Materials in Medicine 21:2227-2236. doi:10.1007/s10856-010-4065-x.

Badawy, E.M. y Rabea I. 2011. A biopolymer chitosan and its derivatives promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrates Chemistry. Vol. 29:460381. doi:10.1155/2011/460381.

Balau L., Lisa G., Popa M.I., Tura V. y Melnig V. 2004. Physico-chemical properties of chitosan films. Central European Journal of Chemistry 2(4), 638-647. doi:10.2478/BF02482727.

Bourtoom, T. 2008. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin Journal of Science and Technology 30 (Suppl.1):149-165.

Brand-Williams, W., Cuvelier M.E. y Berset, C. 1995. Use of a free radical method to evaluate antioxidants activity. LWT-Food Sciences and Technology 28(1):25-30. doi.org/10.1016/S0023-6438(95)80008-5.

Campa-Siqueiros P., Vargas-Aispuro I., Quintana-Owen P., Freile-Pelegrin Y., Azamar-Barrios J. y Madera-Santana, T. 2020. Physicochemical and transport-properties of biodegradable agar films impregnated with natural semichemical based on hydroalcoholic garlic extract. International Journal of Biological Macromolecules 151:27-35. doi:10.10/j.ijbiomac.2020.02.158.

El Ghaouth, A., Arul, J., Asselin, A. y Benhamou, N. 1992. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research. 96(9): 769-779.

Escárcega-Galaz, A., Sánchez-Machado, D., López-Cervantes, J., Sánchez-Silva, A., Madera-Santana, T. y Paiseiro-Losada, P. 2018. Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. International Journal of Biological Macromolecules 116:472-481. doi.org/10.1016/j.ijbiomac.2018.04.149

Fang, Y., Tung, M., Britt, I., Yada, S. y Dalgleish, D. 2002. Tensile and barrier properties of edible films made from whey proteins. JFS: Food Engineering and Physical Properties. 67, 188-193. https://doi.org/10.1111/j.1365-2621.2002.tb11381.x.

Genskowsky E., Puente L.A., Pérez-Alvarez J.A., Fernandez-Lopez J., Muñoz L.A. y Viuda-Martos, M. 2015. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry. Food Science and Technology 64:1057-1062. doi:10.1016/j.lwt.2015.07.026

Goycoolea, F., Remuñan-López, C. y Alonso, M. J., 2009. Nanopartículas a base de polisacáridos: quitosano. Monogr. Real Acad. Nac. Farm. 2009, 103-131.

Jakuboswka E., Gierszewska M., Nowaczyk J. y Olewnik-Kruszkowska, E. 2020. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids 108:106007. doi.org/10.1016/j.foodhyd.2020.106007.

Pandey V.K., Ul Islam R., Shams R. y Hussain A.D. 2022. A comprehensive review on the application of essential oils as bioactive compounds in nanoemulsion based edible coating of fruits and vegetables. Applied Food Research 2(1):100042. doi.org/10.1016/j.afres.2022.100042.

Peniche, C., Argüelles-Monal, W. y Goycoolea, F.M., 2008. Chitin and Chitosan: Major Sources, Properties and Applications, in: Belgacem, M.N., Gandini, A. (Eds.), Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, pp. 517-542. doi.org/10.1016/B978-0-08-045316-3.00025-9

Liu, Y, Yuan, Y., Duan, S., Li, G. y Liu, B. 2020. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules 155:249-259. doi:10.1016/j.ijbiomac.2020.03.217

López-Ambrocio, M.N., Ruiz-Posadas, L.M. y Delgadillo-Martínez. 2016. Actividad antimicrobiana del aceite esencial de tomillo (Thymus vulgaris L). Agroproductividad 9(11):78-82.

Kader, A.A. y Arpaia, M.L. 1999. Avocado, Produce Facts. Postharvest Technology Center. University of California, Davis. http://postharvest.ucdavis.edu/produce facts/fruits/avocado.html.

Kanmani, P. y Rhim, J. 2014. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers 102:708-716. doi:10.1016/j.carbpol.2013.10.099

Kumar S., Mukherjee A. y Dutta, J. 2020. Chitosan based nanocomposite films and coating: Emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology 97:196-209. doi.org/10.1016/j.tifs.2020.01.002

Madera-Santana, T., Robledo, D. y Freile-Pelegrin, Y. 2011. Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia corner. Marine Biotechnology 13:793-800. doi 10.1007/s10126-010-9341-8

Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., y Plascencia-Jatomea M. 2010. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 305-315. doi.org/10.1016/j.carbpol.2010.04.069

Martínez-Robinson, K.G., Martínez-Inzunza, A., Córdova, R.J.R., Rochín-Wong, S., Vasquez-Garcia, S.R. y Fernández-Quiroz, D. 2022. Physicochemical study of chitin and chitosan obtained from California brown shrimp (Farfantepenaeus californiensis) exoskeleton. Biotecnia 24, 28-35. doi.org/10.18633/biotecnia.v24i2.1616

Maftoonazad, N. y Ramaswany, H. 2005. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT:Food Science and Technology 38:617-624. doi:10.1016/j.lwt.2004.08.007

Meir S., Naiman D., Akerman M., Hyman J., Zauberman G. y Fuchs, Y. 1997. Prolonged storage of “Hass” avocado fruit using modified atmosphere packaging. Postharvest Biology and Technology 12(1):51-60. doi.org/10.1016/S0925-5214(97)00038-0

Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Reza, M., Hashemi, M., Le Coz, C. y Coma, V. 2017. Cinnamon and ginger essential oil to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids 70:36-45. doi.org/10.1016/j.foodhyd.2017.03.015

Ramos-García, M., Bautista-Baños, S. y Barrera-Necha, L. 2010. Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Rev. Mex. Fitopatol. 28, 44-57. https://www.redalyc.org/articulo.oa?id=612/61214206005.

Rhim J.W., Hong S.I., Park H.M. y Ng, P. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry 54(16):5814-5822. doi:10.1021/jf060658h

Rinaudo M. 2006. Chitin and chitosan: Properties and applications. Progress in Polymers Science 31:603-632.

Rodriguez-Nuñez J.R., Madera-Santana T., Sanchez-Machada D., Lopez-Cervantes J. y Soto-Valdez, H. 2014. Chitosan/Hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. Journal of Polymers and Environment 22(1):41-51. doi 10.1007/s10924-013-0621-z

Santos-Lopez G., Arguelles-Monal W., Carvajal-Millan E., Lopez-Franco Y., Recillas-Mota M. y Lizardi-Mendoza J. 2017. Aerogels from chitosan solutions in ionic liquids. Polymers 9,722. doi:10.3390/polym9120722

Sellamuthu, P.S., Mafune, M., Sivakumar, P. y Sounndy, D. 2013. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocados. Journal of the Science of Food Agriculture 93:3024-3031. doi 10.1002/jsfa.6135

Vargas, M., Albors, A., Chrrait, A. y Gonzalez, C. 2006. Quality of cold-stores strawberries as affected by chitosan oleic acid edible coating. Postharvest Biology and Technology 41(2):164-171. doi:10.1016/j.postharvbio.2006.03.016

Villa-Rodríguez, J.A., Molina-Corral, F.J., Ayala-Zavala, F. y González-Aguilar, G. 2011. Effect of maturity stage on the content of fatty acid and antioxidant activity of “Hass” avocado. Food Research International 44(5):1231-1237. doi:10.1016/j.foodres.2010.11.012

Published

2022-12-08

How to Cite

Madera-Santana, T. J., Toledo-López, V. M., Martinez-Robison, K., Rejón-Moo, V., & Fortiz Hernández, J. (2022). Evaluation of edible chitosan, agar and thyme films to maintain the quality of ‘Hass’ avocado fruits during storage. Biotecnia, 25(1), 116–125. https://doi.org/10.18633/biotecnia.v25i1.1728

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.