Estudio Fisicoquímico de Quitina y Quitosana obtenidas a partir del exoesqueleto de camarón café (Farfantepenaeus californiensis)

Authors

  • Karla Guadalupe Martinez-Robinson Grupo de Investigación en Biopolímeros, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), 83304 Hermosillo, Sonora, México.
  • Alfredo Martínez-Inzunza Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
  • Sarai Rochín-Wong Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
  • Rosalva Josefina Rodríguez Córdova Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000 Hermosillo, Sonora, México.
  • Salomon Ramiro Vasquez-Garcia Departmento de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), 58030 Morelia, Michoacán, México
  • Daniel Fernández-Quiroz Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000 Hermosillo, Sonora, México. https://orcid.org/0000-0002-3927-0556

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1616

Keywords:

Biopolymers, crustacean waste, isolation of chitin, viscosity-average molecular weight, degree of acetylation

Abstract

This work describes the obtention of chitin and chitosan from the brown shrimp exoskeleton (Farfentepenaeus californiensis), which is collected from the Gulf of California. The chitin isolation process was carried out by a consecutive treatment that includes demineralization and deproteinization. On the other hand, the preparation of chitosan was conducted through alkaline hydrolysis, and the product was purified by using a membrane filters series to homogenize the size of the macromolecular chains. According to the methodology, the yield of chitin and chitosan was around 34 % and 20 % (dry weight), respectively. The materials were characterized by FTIR spectroscopy and thermogravimetric analysis. Also, the chitosan sample was analyzed by proximal test, viscometric-average molecular weight, and deacetylation degree. The products exhibited chemical structure and physicochemical properties comparable to biopolymers isolated from similar sources reported in the literature. Chitosan was found to have a degree of acetylation of 15.87 % (by 1H-NMR analysis) and Mv=170 kDa. The results suggest that the chitinous waste from the Sea of Cortes coast can be considered a promising source for the preparation of chitosan and used for several applications in the region.

Downloads

Download data is not yet available.

References

Abdou, E.S., Nagy, K.S.A., Elsabee, M.Z., 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology 99, 1359–1367.

Alonso, J.G., Peniche-Covas, C., Nieto, J.M., 1983. Determination of the degree of acetylation of chitin and chitosan by thermal analysis. Journal of Thermal Analysis 28, 189–193.

Argüelles, W., Heras Ángeles, Acosta, N., Galed, G., Gallardo, A., Miralles, B., Peniche C., San Roman J., 2004. Caracterización de quitina y quitosano. In: Quitina y Quitosano: obtención, caracterización y aplicaciones. Pontificia Universidad Católica del Perú, Lima, Perú, pp. 157–206.

Argüelles-Monal, W.M., Lizardi-Mendoza, J., Fernández-Quiroz, D., Recillas-Mota, M.T., Montiel-Herrera, M., 2018. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers 10, 342.

Beaney, P., Lizardi-Mendoza, J., Healy, M., 2005. Comparison of chitins produced by chemical and bioprocessing methods. J. Chem. Technol. Biotechnol. 80, 145–150.

Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles-Monal, W., Desbrières, J., Rinaudo, M., 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42, 3569–3580.

Dahmane, E.M., Taourirte, M., Eladlani, N., Rhazi, M., 2014. Extraction and Characterization of Chitin and Chitosan from Parapenaeus longirostris from Moroccan Local Sources. International Journal of Polymer Analysis and Characterization 19, 342–351.

Do Nascimento Marques, N., dos Santos Alves, K., Vidal, R.R.L., da Silva Maia, A.M., Madruga, L.Y.C., Curti, P.S., de Carvalho Balaban, R., 2020. Chemical Modification of Polysaccharides and Applications in Strategic Areas. In: La Porta, F. de A., Taft, C.A. (Eds.), Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies, Engineering Materials. Springer International Publishing, Cham, pp. 433–472.

EL Knidri, H., Dahmani, J., Addaou, A., Laajeb, A., Lahsini, A., 2019. Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetylation degree and molecular weight. International Journal of Biological Macromolecules 139, 1092–1102.

Ghormade, V., Pathan, E.K., Deshpande, M.V., 2017. Can fungi compete with marine sources for chitosan production? International Journal of Biological Macromolecules, 11th APCCS-2016-Chemistry, Environmental, Biotechnology and Biomedical Aspects of Chitin and Chitosan 104, 1415–1421.

Hou, F., Ma, X., Fan, L., Wang, D., Ding, T., Ye, X., Liu, D., 2020. Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydrate Polymers 231, 115669.

Joseph, S.M., Krishnamoorthy, S., Paranthaman, R., Moses, J.A., Anandharamakrishnan, C., 2021. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications 2, 100036.

Juárez-de la Rosa, B.A., May-Crespo, J., Quintana-Owen, P., Gónzalez-Gómez, W.S., Yañez-Limón, J.M., Alvarado-Gil, J.J., 2015. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates. Thermochimica Acta 610, 16–22.

Kurita, K., 2006. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar Biotechnol 8, 203–226.

Meng, X., Yang, L., Kennedy, J.F., Tian, S., 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers 81, 70–75.

Palpandi, C., Shanmugam, V., Shanmugam, A., 2009. Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. International Journal of Medicine and Medical Sciences 1, 198–205.

Pastor de Abram, A., 2004. Quitina y Quitosano: Obtención, caracterización y aplicaciones, 1st ed. Fondo Editorial de la Pontificia Universidad Católica del Peru, Peru.

Paulino, A.T., Simionato, J.I., Garcia, J.C., Nozaki, J., 2006. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers 64, 98–103.

Peniche, C., Argüelles-Monal, W., Goycoolea, F.M., 2008. Chitin and Chitosan: Major Sources, Properties and Applications. In: Monomers, Polymers and Composites from Renewable Resources. Elsevier, pp. 517–542.

Percot, A., Viton, C., Domard, A., 2003. Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules 4, 12–18.

Puvvada, Y.S., Vankayalapati, S., Sukhavasi, S., 2012. Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. International Current Pharmaceutical Journal 1, 258–263.

Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Progress in Polymer Science 31, 603–632.

Rinaudo, M., Milas, M., Dung, P.L., 1993. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules 15, 281–285.

Rødde, R.H., Einbu, A., Vårum, K.M., 2008. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate Polymers 71, 388–393.

Sannan, T., Kurita, K., Iwakura, Y., 1976. Studies on chitin, 2. Effect of deacetylation on solubility. Die Makromolekulare Chemie 177, 3589–3600.

Sierra, D.M.E., Orozco, C.P.O., Rodríguez, M.A.Q., Villa, W.A.O., 2013. Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos. Scientia et Technica 18, 260–266.

Socrates, G., 2001. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. John Wiley & Sons.

Tanaka, Y., Matsuguchi, H., Katayama, T., Simpson, K.L., Chichester, C.O., 1976. The biosynthesis of astaxanthin—XVI. The carotenoids in crustacea. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 54, 391–393.

Vårum, K.M., Antohonsen, M.W., Grasdalen, H., Smidsrød, O., 1991. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydrate Research 211, 17–23.

Wang, Y., Chang, Y., Yu, L., Zhang, C., Xu, X., Xue, Y., Li, Z., Xue, C., 2013. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers 92, 90–97.

Younes, I., Rinaudo, M., 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13, 1133–1174.

Downloads

Published

2022-05-31

How to Cite

Martinez-Robinson, K. G., Martínez-Inzunza, A., Rochín-Wong, S., Rodríguez Córdova, R. J., Vasquez-Garcia, S. R., & Fernández-Quiroz, D. (2022). Estudio Fisicoquímico de Quitina y Quitosana obtenidas a partir del exoesqueleto de camarón café (Farfantepenaeus californiensis). Biotecnia, 24(2), 28–35. https://doi.org/10.18633/biotecnia.v24i2.1616

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.