Supports of ceramic mixture for acelerated growth of Mycobacterium smegmatis

Authors

DOI:

https://doi.org/10.18633/biotecnia.v22i3.1197

Keywords:

Ceramic materials, Mycobacterium, Photocatalysis, Hydroxyapatite

Abstract

Mycobacterium smegmatis (Ms), with its short generation time and low biosafety requirements, serves as an appropriate model to study Mycobacteria in general and is useful for assays of anti-tuberculosis agents. Recently, ceramic materials have been used in biomedical applications as a substrate. The aim of this work was to evaluate the ability of growth by Ms over supports prepared with a ceramic mixture. The supports were synthetized from hydroxyapatite (HA) and In2TiO5. SEM, EDS and XRD were used for analyze its final chemical composition. The increase of the oxygen concentration it is attributed to photocatalytic effect promoted by the sunlight exposure of supports immersed on MDB 7H9. The ceramic mixture, was responsible of the oxygen increase and, consequently, of the increase of eight times on the minimal inhibitory concentration in rezasurine assays on microplate. The use of the ceramic support showed the Ms growth 24 h before respect to the control without support.

 

Downloads

Download data is not yet available.

Author Biographies

Adriana Garibay Escobar, Universidad de Sonora

Departamento de Ciencias Químico-Biológicas

Maestra de Tiempo completo Titular C

Francisco Brown Bojórquez, Universidad de Sonora

Departamento de Investigación en Polímeros y materiales

Profesor Investigador

Flor Madalitza Vazquez Paz, Universidad de Sonora

Maestra de Asignatura

Iliana Celina I. Muñoz Palma, Universidad de Sonora

Departamento de Ciencias Químico-Biológicas, Maestra de Tiempo completo Titular C

Manuel Pérez Tello, Universidad de Sonora

Departamento de Ingeniería Química y Metalurgia

Profesor Investigador

References

Annaz, B., Hing, K.A., Kayser M. y Buckland T. 2004. Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. Journal of Microscopy. 215: 100-110.

Bagambisa B. y Joos U. 1990. Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials. 11: 50-56.

Baxter, F.R., Bowen, C.R., Turner, I., Bowen, J.P., Gittings, J.P. y Chaudhuri, J.B. 2009. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. Journal of Materials Science: Materials in Medicine. 20: 1697- 1708.

Bonkat, G. y Bachmann A. 2012. Growth of mycobacteria in urine determined by isothermal microcalorimetry: implications for urogenital tuberculosis and other mycobacterial infections. Urology. 80(5): 1163, 1169-1112.

Chakraborty, P. y Kumar, A. 2019. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Mycrobial Cell. 6(2): 105-122.

Henke, J.M. y Bassler B.L. 2004. Bacterial social engagements. Trends in Cell Biology. 14: 648-56.

Hertog, A.L., Visser, D.W., Ingham, C.J., Fey, F.H. y Anthony, R.M. 2010. Simplified automated image analysis for detection and phenotyping of Mycobacterium tuberculosis on porous supports by monitoring growing microcolonies. Anil Kumar Tyagi. 5: 1008.

Khalifa, R.A., Nasser, M.S., Goma, A.A. y Osman, N.M. 2013. Resazurin microtiter assay plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egyptian Journal of Chest Diseases and Tuberculosis. 62: 241-247.

Kulka, K., Hatfull, G. y Ojha, A. K. 2012. Growth of Mycobacterium tuberculosis biofilms. Journal of Visualized Experiments. 60: 3820.

Muñoz, I.C., Brown, F., Vazquez-Paz, F.M., Marcazzó y J. Cruz- Zaragoza, E. 2016. Termoluminiscencia de titanato de indio activado con europio. Revista Electrónica Nova Scientia.16: 77-90.

Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W.R. Jr y Hatfull G.F. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 123(5): 861-873.

O’Toole, G.A. y R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Molecular Microbiology. 28: 449-61.

Reyrat, J.M. y D. Kahn (2001). Mycobacterium smegmatis: an absurd model for tuberculosis? Trends in Microbiology. 9: 472-4.

Salem, K.A., Stevens, R., Pearsons, R.G., Davies, M.C., Tendler, S.J.B., Roberts, C.J., Williams, P.M. y Shakesheff, K.M. 2002. Interaction of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 61: 212–217.

Sempere, M.A., Valero-Guillén, P.L., de Godos, A. y Martín- Luengo, F. 1993. A triacyl trehalose containing 2-methyl branched unsaturated fatty acyl groups isolated from Mycobacterium fortuitum. Journal of General Microbiology. 139: 585-590.

Senegas, J.P. y Galy J. 1975. Sur un nouveau type d’oxydes doubles m+iv In2o5 (m = Ti, V): etude cristallochimique. Acta Crystallogr. Sect. B. 31: 1614.

Shi, T., Fu, T. y Xie, J. 2011. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. Current Microbiology. 63: 470-476.

Subrahmanyam, A., Arokiadoss, T. y Ramesh, T.P. 2007. Studies on the oxygenation of human blood by photocatalytic action. Artificial Organs. 31: 819-825.

Subrahmanyam, A., Thangaraj, P.R., Kanuru, Ch., Jayakumar y A., Gopal, J. 2014. Quantification of photocatalytic oxygenation of human blood. Medical Engeneering and Physics. 36: 530- 533.

Syed, A., Khalid, A., Sikander, K.S., Nazia, B. y Shahana, U. K. 2014. Detection of Mycobacterium smegmatis biofilm and its control by natural agents. International Journal of Current Microbiology and Applied Sciences. 3: 801-812.

Shi, T., Fu, T. y Xie, J. 2011. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. Current Microbiology. 63: 470-6.

Wang, W.D., Huang, F.Q., Liu, C.M., Lin X.P. y Shi J.L. 2007. Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst. Materials Science & Engineering B. 139: 74-80.

WHO, World Health Organization. Global tuberculosis report. [Consultado 20 diciembre 2019]2019. Disponible en: http://www.who.int/tb/publications/global_report/en/fecha=17/10/2019.

Downloads

Published

2020-09-21

How to Cite

Garibay Escobar, A., Brown Bojórquez, F., Vazquez Paz, F. M., Muñoz Palma, I. C. I., & Pérez Tello, M. (2020). Supports of ceramic mixture for acelerated growth of Mycobacterium smegmatis. Biotecnia, 22(3), 125–130. https://doi.org/10.18633/biotecnia.v22i3.1197

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.