Actividad antibacteriana y antimicobacteriana de los subproductos exoesqueleto y cefalotórax del camarón blanco (Litopenaeus vannamei): perfil de ácidos grasos del extracto activo hexánico del cefalotórax del camarón blanco

Authors

  • Carmen María López-Saiz Deparment of Research and Postgraduate Studies in Food. University of Sonora.
  • Enrique Wenceslao Coronado-Aceves Biomedical Research Institute. National Autonomous University of México. https://orcid.org/0000-0002-9892-2315
  • Rosario Tavera-Hernández Institute of Chemistry. National Autonomous University of México. https://orcid.org/0000-0001-5501-2496
  • Clara Inés Espitia-Pinzón Biomedical Research Institute. National Autonomous University of México.
  • Manuel Jiménez-Estrada Institute of Chemistry. National Autonomous University of México.
  • Patricia Guadalupe Morán-Corrales Department of Chemical Engineering and Metallurgy. University of Sonora.
  • Martin Samuel Hernández Zazueta Universidad de Sonoa

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1648

Keywords:

Litopenaeus vannamei, antimicrobial, Mycobacterium, by-products, fatty acids

Abstract

The objective of this study was to evaluate the antibacterial and antimycobacterial potential of the by-products of white shrimp (Litopenaeus vannamei). Sonora, México is the second shrimp producer state. The following extracts were obtained: exoskeleton hexanic, methanolic and acqueous extracts (ExHex, ExMe, ExAc); and cephalothorax hexanic, acetonic and methanolic extracts (CeHex, CeAce, CeMe). Antibacterial effect was determined by the broth microdilution method against Gram-positive bacteria: Enterococcus faecalis American Type Culture Collection (ATCC) 51299, Staphylococcus aureus ATCC 25293, and Staphylococcus epidermidis; Gram-negative bacteria: Escherichia coli ATCC 25922, Klebsiella pneumoniae, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium; and Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) Danish strain. CeHex resulted active against all Gram-positive and Gram-negative bacteria (MIC50= 400 ug mL-1) and against M. bovis BCG (MIC100= 250 ug mL-1). Gas chromatography (GC) of CeHex identified oleic, linoleic, palmitic, stearic, behenic, palmitoleic and linolenic fatty acids. The strong antibacterial activity of CeHex and the identification of its main chemical constituents justify further studies on the clinical applications of this marine by-product.

Downloads

Download data is not yet available.

References

AlFaris, N.A., Alshammari, G.M., AlTamimi, J.Z., AlMousa, L.A., Alagal, R.I., AlKehayez, N.M., Aljabryn, D.H., Alsayadi, M.M. and Yahya, M.A. 2021. Evaluating the effects of different processing methods on the nutritional composition of shrimp and the antioxidant activity of shrimp powder. Saudi Journal of Biological Sciences. 29: 640-649.

Altaf, M., Miller, C. H., Bellows, D. S. and O’Toole, R. 2010. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis. 90: 333-337.

Armenta, R.E., Guerrero-Legarreta, I. and Huerta, S. 2002. Extracción de caroproteinas a partir de residuos de camarón fermentados. Academia Mexicana de Investigación y Docencia en Ingeniería Química. 1: 49–55.

Baizman, E. R., Branstrom, A. A., Longley, C. B., Allanson, N., Sofia, M. J., Gange, D., and Goldman, R. C. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology. 146: 3129-3140.

Bharathi, R., Vigneshpriya, D. and Krishnaveni, N. 2019. Comparison of proximate and fatty acid composition of shell of marine edible shrimps, Heterocarpus gibbosus (Bate, 1888) and Aristeus alcocki (Ramadan, 1938). International Journal of Zoology and Applied Biosciences. 4: 75–79.

Brown, D. G., Lister, T. and May-Dracka, T. L. 2014. New natural products as new leads for antibacterial drug discovery. Bioorganic & medicinal chemistry letters. 24: 413-418.

Carson, D.D. and Daneo-Moore, L. Effects of fatty acids on lysis of Streptococcus faecalis. 1980. Journal of Bacteriology. 141: 1122–1126.

Chamberlain, N. R., Mehrtens, B. G., Xiong, Z. H. U. O., Kapral, F. A., Boardman, J. L. and Rearick, J. I. 1991. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infection and Immunity. 59: 4332-4337.

Choi, W. H. 2016. Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against Mycobacterium tuberculosis. Asian Pacific Journal of Tropical Medicine. 9: 125-129.

Collins, L. A., and Franzblau, S. G. 1997. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy. 41: 1004-1009.

Coronado-Aceves, E. W., Sánchez-Escalante, J. J., López-Cervantes, J., Robles-Zepeda, R. E., Velázquez, C., Sánchez-Machado, D. I., and Garibay-Escobar, A. 2016. Antimycobacterial activity of medicinal plants used by the Mayo people of Sonora, Mexico. Journal of Ethnopharmacology. 190: 106-115.

Daletos, G., Ancheeva, E., Chaidir, C., Kalscheuer, R., and Proksch, P. 2016. Antimycobacterial metabolites from marine invertebrates. Archiv der Pharmazie. 349: 763-773.

Desbois, A. P. and Smith, V. J. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology. 85: 1629-1642.

Djellouli, M., López-Caballero, M. E., Arancibia, M. Y., Karam, N. and Martínez-Alvarez, O. 2020. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-products with glucosamine. Waste and Biomass Valorization. 11: 2491-2505.

Greenway, D. L. A. and Dyke, K. G. H. 1979. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. Microbiology. 115: 233-245.

Gulzar, S. and Benjakul, S. 2018. Ultrasound waves increase the yield and carotenoid content of lipid extracted from Ccephalothorax of pacific white shrimp (Litopenaeus vannamei). European Journal of Lipid Science and Technology. 120: 1700495.

Guzmán-Gutiérrez, S. L., Silva-Miranda, M., Krengel, F., Huerta-Salazar, E., León-Santiago, M., Díaz-Cantón, J. K., Espitia-Pinzón, C. and Reyes-Chilpa, R. 2020. Antimycobacterial Activity of Alkaloids and Extracts from Tabernaemontana alba and T. arborea. Planta Medica. 88: 53-61.

Kanetsuna, F. 1985. Bactericidal effect of fatty acids on mycobacteria, with particular reference to the suggested mechanism of intracellular killing. Microbiology and Immunology. 29: 127-141.

Hernández‐Zazueta, M. S., García‐Romo, J. S., Noguera‐Artiaga, L., Luzardo‐Ocampo, I., Carbonell‐Barrachina, Á. A., Taboada‐Antelo, P., ... & Burgos‐Hernández, A. (2021). Octopus vulgaris ink extracts exhibit antioxidant, antimutagenic, cytoprotective, antiproliferative, and proapoptotic effects in selected human cancer cell lines. Journal of Food Science, 86(2), 587-601.

Hernández-Zazueta, M. S., Luzardo-Ocampo, I., García-Romo, J. S., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Taboada-Antelo, P., ... & Burgos-Hernández, A. (2021). Bioactive compounds from Octopus vulgaris ink extracts exerted anti-proliferative and anti-inflammatory effects in vitro. Food and Chemical Toxicology, 151, 112119.

Kochan, I., and Berendt, M. 1974. Fatty acid-induced tuberculocidal activity in sera of guinea pigs treated with bacillus Calmette-Guerin and lipopolysaccharide. Journal of Infectious Diseases. 129: 696-704.

Kondo, E. and Kanai, K. 1972. The lethal effect of long-chain fatty acids on mycobacteria. Japanese Journal of Medical Science and Biology. 25: 1-13.

Heu, M.S., Kim, J.S. and Shahidi, F. 2003. Components and nutritional quality of shrimp processing by-products. Food Chemistry. 82: 235–242.

Jurno, A. C., Netto, L. O. C., Duarte, R. S., and Machado, R. R. P. 2019. The search for plant activity against tuberculosis using breakpoints: A review. Tuberculosis. 117: 65-78.

Kandra, P., Challa, M.M. and Kalangi P.J.H. 2012. Efficient use of shrimp waste: present and future trends. Applied Microbiology and Biotechnology. 93: 17–29.

Laport, M. S., Santos, O. C. S., and Muricy, G. 2009. Marine sponges: potential sources of new antimicrobial drugs. Current pharmaceutical biotechnology. 10: 86-105.

López-Cervantes, J., Adan-Bante, N.P. and Sánchez-Machado, D.I. 2010. Separation and biochemical characterization of the products from fermented shrimp wastes. In: Le Behan, E. (Ed.), Sea By-Products as Real Material: New Ways of Application. Transworld Research Network. 2010: 1–16.

López-Saiz, C.M., Hernández, J., Cinco-Moroyoqui, F.J., Velázquez, C., Ocaño-Higuera, V.M., Plascencia-Jatomea, M., Robles-Sánchez, M., Machi-Lara, L. and Burgos-Hernández, A. 2016. Antimutagenic compounds of white shrimp (Litopenaeus vannamei ): isolation and structural elucidation. Evidence-Based Complementary and Alternative Medicine. 2016: 1–7.

López-Saiz, C.-M., Velázquez, C., Hernández, J., Cinco-Moroyoqui, F.-J., Plascencia-Jatomea, M., Robles-Sánchez, M., Machi-Lara, L. and Burgos-Hernández, A. 2014. Isolation and structural elucidation of antiproliferative compounds of lipidic fractions from white shrimp muscle (Litopenaeus vannamei). International Journal of Molecular Sciences. 15: 23555–23570.

Mandeville, S., Yaylayan, V. and Simpson, B.K.. 1992. Proximate analysis, isolation and identification of amino acids and sugars from raw and cooked commercial shrimp waste. Food Biotechnology. 6: 51–64.

Mukherjee, G., Mukhopadhyay, B. and Sil, A. K. 2021. Edible marine algae: a new source for anti-mycobacterial agents. Folia microbiologica. 66: 99-105.

Mohanasrinivasan, V., Mishra, M., Paliwal, J. S., Singh, S. K., Selvarajan, E., Suganthi, V., and Devi, C. S. 2014. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. Biotech. 4: 167-175.

Molina-Salinas, G. M., Ramos-Guerra, M. C., Vargas-Villarreal, J., Mata-Cárdenas, B. D., Becerril-Montes, P., and Said-Fernández, S. 2006. Bactericidal activity of organic extracts from Flourensia cernua DC against strains of Mycobacterium tuberculosis. Archives of Medical Research. 37: 45-49.

Navarro-Navarro, M., Ruiz-Bustos, P., Valencia, D., Robles-Zepeda, R., Ruiz-Bustos, E., Virués, C., Hernández, J., Domínguez, Z. and Velazquez, C. 2013. Antibacterial activity of Sonoran propolis and some of its constituents against clinically significant Vibrio species. Foodborne Pathogens and Disease. 10: 150-158.

Nirmal, N. P., Santivarangkna, C., Rajput, M. S. and Benjakul, S. 2020. Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology. 103: 20-35.

Núñez-Gastélum, J.A., Sánchez-Machado, D.I., López-Cervantes, J., Paseiro-Losada, P., Sendón, R., Sanches-Silva, A.T., Costa, H.S., Aurrekoetxea, G.P., Angulo, I. and Soto-Valdez, H. 2011. Evaluación físico-química de aceite pigmentado obtenido de la cabeza de camarón. Grasas y Aceites. 62: 321–327.

Nwanna, L. C., Balogun, A. M., Ajenifuja, Y. F. and Enujiugha, V. N. 2004. Replacement of fish meal with chemically preserved shrimp head in the diets of African catfish, Clarias gariepinus. Journal of Food Agriculture and Environment. 2: 79-83.

Osuna-Ruiz, I., López-Saiz, C. M., Burgos-Hernández, A., Velázquez, C., Nieves-Soto, M., and Hurtado-Oliva, M. A. 2016. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharmaceutical Biology. 54: 2196-2210.

Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., and Portaels, F. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 46: 2720-2722.

Peñuelas-Urquides, K., Villarreal-Treviño, L., Silva-Ramírez, B., Rivadeneyra-Espinoza, L., Said-Fernández, S., and León, M. B. D. 2013. Measuring of Mycobacterium tuberculosis growth: a correlation of the optical measurements with colony forming units. Brazilian Journal of Microbiology. 44: 287-290.

Pettit, G. R., Knight, J. C., Collins, J. C., Herald, D. L., Pettit, R. K., Boyd, M. R. and Young, V. G. 2000. Antineoplastic agents 430. Isolation and structure of cribrostatins 3, 4, and 5 from the Republic of Maldives Cribrochalina species. Journal of Natural Products. 63: 793-798.

Rwegasila, E., Mubofu, E.B., Nyandoro, S. S., Erasto, P. and Munissi, J. J. 2016. Preparation, characterization and in vivo antimycobacterial studies of panchovillin-chitosan nanocomposites. International Journal of Molecular Sciences. 17: 1559.

Sachindra, N.M., Bhaskar, N. and Mahendrakar, N.S. 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Management. 26: 1092–1098.

Sandoval-Montemayor, N. E., García, A., Elizondo-Treviño, E., Garza-González, E., Alvarez, L. and del Rayo Camacho-Corona, M. 2012. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. Molecules, 17(9), 11173-11184.

Senevirathne, M., and Kim, S. K. 2012. Utilization of seafood processing by-products: medicinal applications. Advances in Food and Nutrition Research. 65: 495-512.

Takeungwongtrakul, S., Benjakul, S. and H-kittikun, A. 2012. Lipids from cephalothorax and hepatopancreas of Pacific white shrimp (Litopenaeus vannamei): Compositions and deterioration as affected by iced storage. Food Chemistry. 134: 2066–2074.

Taneja, N. K. and Tyagi, J. S. 2007. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. Journal of Antimicrobial Chemotherapy. 60: 288-293.

TheFishSite: Mexican shrimp sector set for 177,000 tonne year. [Consulted in December 21, 2021] 2021. Available in: https://thefishsite.com/articles/mexican-shrimp-sector-set-for-177-000-tonne-year

Torres, Y. R., Berlinck, R. G., Nascimento, G. G., Fortier, S. C., Pessoa, C. and de Moraes, M. O. 2002. Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 40: 885-891.

Velazquez, C., Navarro, M., Acosta, A., Angulo, A., Dominguez, Z., Robles, R., Lugo E, Goycoolea FM, Velazquez EF, Astiazaran H, and Hernandez, J. 2007. Antibacterial and free‐radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology. 103: 1747-1756.

Vilar-Junior, J. C., Ribeaux, D. R., Alves da Silva, C. A., Campos-Takaki, D. and Maria, G. 2016. Physicochemical and antibacterial properties of chitosan extracted from waste shrimp shells. International Journal of Microbiology, 2016: 7.

Wang, L., Wang, J., Liu, J. and Liu, Y. 2018. Antitubercular marine natural products. Current Medicinal Chemistry. 25: 2304-2328.

Downloads

Published

2022-05-31

How to Cite

López-Saiz, C. M. ., Coronado-Aceves, E. W. ., Tavera-Hernández, R. ., Espitia-Pinzón, C. I. ., Jiménez-Estrada, M. ., Morán-Corrales, P. G. ., & Hernández Zazueta, M. S. (2022). Actividad antibacteriana y antimicobacteriana de los subproductos exoesqueleto y cefalotórax del camarón blanco (Litopenaeus vannamei): perfil de ácidos grasos del extracto activo hexánico del cefalotórax del camarón blanco. Biotecnia, 24(2), 45–52. https://doi.org/10.18633/biotecnia.v24i2.1648

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.