un Modeling radial growth of Amylomyces rouxii and its tolerance to selected pharmaceutical active compounds

Authors

  • Doctor Departamento de Energía, Universidad Autónoma Metropolitana-Azcapotzalco https://orcid.org/0000-0002-7512-2737
  • M. en B. Posgrado en Energía y Medio Ambiente, Universidad Autónoma Metropolitana-Iztapalapa.
  • Araceli Tomasini Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.18633/biotecnia.v26.2292

Keywords:

fungi, inhibition growth, logistic equation, microcontaminants, growth modeling

Abstract

Filamentous fungi that tolerate the presence of pharmaceutical active compounds (PhACs) have the potential application of removing them. In this work it was showed that radial growth data can be modeled and used to determine the kinetic parameters to quantify fungal growth in the presence of PhACs. The capacity of Amylomyces rouxii to grow in the presence of 12 PhACs at concentrations between 100 to 5000 µg L-1 was evaluated. The studied PhCAS were paracetamol, ibuprofen, diclofenac, naproxen, sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, carbamazepine, β-estradiol, triclosan, and bisphenol-A. The data of A. rouxii radial growth was modeled using the logistic equation and linear regression. The Vmax, except in cultures with βETD, and µmax values were not affected by the presence of PhACs. Growth inhibition of fungus was calculated at 24 hours. In cultures with diclofenac, triclosan and naproxen, a linear relationship was observed between concentration and radial growth inhibition. However, there was no difference in radial growth inhibition at the different assayed concentrations of ibuprofen, trimethoprim, and β-estradiol. In culture with 5000 µg carbamazepine L-1, growth of A. rouxii was completely inhibited. To the best of our knowledge, this is one the first work reporting PhACs toxicity in zygomycetes.

Downloads

Download data is not yet available.

References

Argumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., Almaraz, J.J., Peña-Cabriales, J.J. 2012. Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo [a] pyrene. Journal of environmental management, 95, S291-S299.

Baldrian P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microbial and Technologu 32, 78-91.

Burkina, V., Sakalli, S., Pilipenko, N., Zlabek, V., Zamaratskaia, G. 2018. Effect of human pharmaceuticals common to aquatic environments on hepatic CYP1A and CYP3A-like activities in rainbow trout (Oncorhynchus mykiss): An in vitro study. Chemosphere, 205, 380-386.

Calderón, A., Meraz, M., Tomasini, A. 2019. Pharmaceuticals Present in Urban and Hospital Wastewaters in Mexico City. Journal of Water Chemistry and Technology, 41(2), 105-112.

Crane, S., Dighton, J., Barkay, T. 2010. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biol, 114(10), 873-80.

de Lima Souza, H.M., Barreto, L.R., da Mota, A.J., de Oliveira, L.A., dos Santos Barroso, H., Zanotto, S.P. 2017. Tolerance to Polycyclic Aromatic Hydrocarbons (PAHs) by filamentous fungi isolated from contaminated sediment in the Amazon region. Acta Scientiarum. Biological Sciences, 39(4), 481-488.

Gabiatti Jr, C., Vendruscolo, F., Piaia, J.C.Z., Rodrigues, R., Durrant, L., Costa, J.A.V. 2006. Radial growth rate as a tool for the selection of filamentous fungi for use in bioremediation. Brazilian Archives of Biology and Technology, 49, 29-34.

Hai, F.I., Yang, S., Asif, M.B., Sencadas, V., Shawkat, S., Sanderson-Smith, M., Gorman, J., Xu, Z.-Q., Yamamoto, K. 2018. Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects, Regulations and Removal by Wastewater Treatment Technologies. Water, 10(2), 107.

Hendricks, K.E., Christman, M.C., Roberts, P.D. 2017. A statistical evaluation of methods of in-vitro growth assessment for Phyllosticta citricarpa: average colony diameter vs. area. PloS one, 12(1), e0170755.

Jos, A., Repetto, G., Rios, J., Hazen, M., Molero, M., Del Peso, A., Salguero, M., Fernández-Freire, P., Pérez-Martın, J., Cameán, A. 2003. Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5-6), 525-532.

Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., Park, J. 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370-375.

León-Santiesteban, H., Bernal, R., Fernández, F.J., Tomasini, A. 2008. Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol-contaminated soil. Journal of Chemical Technology & Biotechnology, 83(10), 1394-1400.

Li, Z., Zlabek, V., Velisek, J., Grabic, R., Machova, J., Kolarova, J., Li, P., Randak, T. 2011. Acute toxicity of carbamazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic EROD. Ecotoxicol Environ Saf. , 43(3), 319-327.

Mehinto, A.C., Hill, E.M., Tyler, C.R. 2010. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol, 44(6), 2176-82.

Montiel, A.M., Fernández, F.J., Marcial, J., Soriano, J., Barrios-González, J., Tomasini, J. 2004. A fungal phenoloxidase (tyrosinase) involved in pentachlorophenol degradation. Biotechnology Letters, 26, 1353-1357.

Ruiz-Lara, A., Fierro, F., Carrasco, U., Oria, J.A., Tomasini, A. 2020. Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachlorophenol: Understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochemistry, 95, 242-250.

Russo, F., Ceci, A., Pinzari, F., Siciliano, A., Guida, M., Malusà, E., Tartanus, M., Miszczak, A., Maggi, O., Persiani, A.M. 2019. Bioremediation of dichlorodiphenyltrichloroethane (DDT)-contaminated agricultural soils: Potential of two autochthonous saprotrophic fungal strains. Applied and environmental microbiology, 85(21).

Sagar, V., & Singh, D. P. . 2011. Biodegradation of lindane pesticide by non white- rots soil fungus Fusarium sp. World journal of microbiology & biotechnology, 27(8), 1747-1754.

Santos, L.H., Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., Montenegro, M.C. 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of hazardous materials, 175(1-3), 45-95.

Tomasini, A., & León-Santiesteban, H.H. (Eds.). (2019). Fungal Bioremediation: Fundamentals and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781315205984. 2019. The Role of the Filamentous Fungi in Bioremediation. in: Fungal Bioremediation: Fundamentals and Applications (Ed.) A. Tomasini, & León-Santiesteban, H.H. , CRC Press Taylor & Francis Group. Boca Raton, FL pp. 3.

Tomasini, A., Flores, V., Cortés, D., Barrios-González, J. 2001. An isolate of Rhizopus nigricans capable of tolerating and removing pentachlorophenol. World Journal of Microbiology and Biotechnology, 17(2), 201-205.

Zhang, W., Zhang, M., Lin, K., Sun, W., Xiong, B., Guo, M., Cui, X., Fu, R. 2012. Eco-toxicological effect of Carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environmental toxi-cology and pharmacology, 33(2), 344-352

Downloads

Additional Files

Published

2024-08-14

How to Cite

León-Santiesteban, H., Severo, E. P., & Tomasini, A. (2024). un Modeling radial growth of Amylomyces rouxii and its tolerance to selected pharmaceutical active compounds. Biotecnia, 26, 416–424. https://doi.org/10.18633/biotecnia.v26.2292

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

You may also start an advanced similarity search for this article.