Frutas tropicales y subproductos como fuente potencial de polisacáridos bioactivos

Authors

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1450

Keywords:

By-products, tropical fruits, polysaccharides, bioactive properties.

Abstract

Consumption of tropical fruits is growing around the world, not only due to their flavor and appearance but also for their nutritional value. In addition to the content in macro and micronutrients, tropical fruits contain substantial amounts of bioactive compounds in peels, and seeds which constitute an underexploited source of bioactive compounds such as phenolic acid, polyphenols, carotenoids, vitamin C and polysaccharides. Polysaccharides have attracted growing interest, particularly for their bioactive characteristics such as antioxidants as well as anti-inflammatory, antimicrobial, anticoagulant, hepatoprotective and immunomodulatory properties. Therefore, obtaining functional ingredients from tropical fruits and by-products is feasible and could be used to develop functional and nutraceutical foods to elaborate products of the pharmaceutical industry and food preservation. The present review provides the most relevant information published during the last ten years (2010-2020) on bioactive polysaccharides extracted with hot water reported in tropical fruits and by-products and their relationship with potential beneficial health effects.

Downloads

Download data is not yet available.

References

Alias, A., Othman, F., Li, A.R., Kamaruddin, A., Yusof, R. y Hussan, F. 2015. Supplementation of Psidium guajava (Guava) fruit polysaccharide attenuates paracetamol-induced liver injury by enhancing the endogenous antioxidant activity. Sains Malaysiana. 44: 1129-1136.

Bhattacharya, Susinjan. Reactive oxygen species and cellular defense system. En: Free radicals in human health and disease. Rani V. y Yadav U.C.S. (ed.), pp 17-29. New Delhi: Springer, India

Batista, J.A., de Aguiar Magalhães, D., Sousa, S.G., dos Santos Ferreira, J., Pereira, C.M.C., do Nascimento Lima, J.V., Figueira de Albuquerque, I., Sousa Dutra Bezerra, N.L. Vieira de Brito, T., da Silva Monteiro, C.E., Franco, A.X., Di Lenardo, D., Almeida Oliveira L., J.P., de Andrade Feitosa, Monteiro de Paula, R.C., Nogueira Barros, F.C., Soares de Oliveira, J., Pereira Vasconcelos, D.F., Gomes Soares, P.M.y dos Reis Barbosa, A.L. 2020. Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis. Journal of Ethnopharmacology. 248: 112303.

Carrillo-López, A. y Yahia, E.M. 2011. Noni (Morinda citrifolia L.). En: Postharvest Biology and Technology of Tropical and Subtropical Fruits. Editor(s): Elhadi M. Yahia (ed.), pp 51-64e. Woodhead Publishing.

Chen, Y., Zhou, T., Zhang, Y., Zou, Z., Wang, F. y Xu, D. 2015. Evaluation of antioxidant and anticancer activities of guava. International Journal of Food Nutrition and Safety. 6: 1-9.

Cheok, C.Y., Mohd Adzahan, N., Abdul Rahman, R., Zainal Abedin, N.H., Hussain, N., Sulaiman, R. y Chong, G.H. 2018. Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition. 58: 335-361.

Chi, A., Kang, C., Zhang, Y., Tang, L., Guo, H., Li, H. y Zhang, K. 2015. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus Jujube on Chronic Fatigue Syndrome rats. Carbohydrate Polymers. 122: 189-196.

de Sousa Sabino, L.B., da Costa Gonzaga, M.L., de Siqueira Oliveira, L., Duarte, A.S. G., e Silva, L.M.A., de Brito, E.S., de Figueiredo, W., da Silva, M.R.L. y de Sousa, P.H.M. 2020. Polysaccharides from acerola, cashew apple, pineapple, mango, and passion fruit co-products: Structure, cytotoxicity and gastroprotective effects. Bioactive Carbohydrates and Dietary Fibre. 24: 100228.

de Jesus Raposo, M.F., De Morais, A.M.B. y De Morais, R.M.S.C. 2015. Marine polysaccharides from algae with potential biomedical applications. Marine Drugs. 13: 2967-3028.

Dembitsky, V.M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S. y Gorinstein, S. 2011. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International. 44: 1671-1701.

Dou, Z., Chen, C. y Fu, X. 2019. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids. 96: 568-576.

Enriquez-Valencia, S.A., Julieta Salazar-Lopez, N.J, Robles-Sanchez, M., Gonzalez-Aguilar, G.A., Fernando Ayala-Zavala, J. y Lopez-Martinez, L.X. 2020. Bioactive properties of exotic tropical fruits and their health benefits. Archivos Latinoamericanos de Nutricion, 70:205-214.

FAO. El futuro de la alimentación y la agricultura: Vías alternativas hacia el 2050. Versión resumida. [Consultado enero 2021] 2018. Disponible en: http://www.fao.org/3/CA1553ES/ca1553es.pdf

Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. y Coimbra, M.A. 2015. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers. 132: 378-396.

Gao, W., Lin, P., Zeng, X.A. y Brennan, M.A. 2017. Preparation, characterization and antioxidant activities of litchi (Litchi chinensis Sonn.) polysaccharides extracted by ultra‐high pressure. International Journal of Food Science & Technology, 52: 1739-1750.

Hasan, N.M., Al Sorkhy, M.A., Al Battah, F.F. 2014. Ziziphus jujube (ennab) of the middle east, food and medicine. Unique Journal of Ayurvedic Herbal Medicine. 2: 7-14.

Holderness, J., Schepetkin, I.A., Freedman, B., Kirpotina, L.N., Quinn, M.T., Hedges, J.F. y Jutila, M.A. 2011. Polysaccharides isolated from Açaí fruit induce innate immune responses. PloS one. 6: e17301.

Hu, Y., Yin, F., Liu, Z., Xie, H., Xu, Y., Zhou, D. y Zhu, B. 2020. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food and Function. 11: 1037-1048.

Huang, L.L., Qiao, F., Peng, G., Yang, X.T. y Duan, X. 2017. Effect of two drying methods on antioxidant activity and hypoglycemic action of polysaccharides in three cultivars of lychee pulp. Drying Technology. 35: 1994-2001.

Huang, F., Zhang, R., Yi, Y., Tang, X., Zhang, M., Su, D., Deng, Y. y Wei, Z. 2014. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules. 19: 3909-3925.

Hung, C.F., Hsu, B.Y., Chang, S.C. yand Chen, B.H. 2012. Antiproliferation of melanoma cells by polysaccharide isolated from Zizyphus jujuba. Nutrition. 28: 98-105.

Jacob, J., Rajiv, P., Gopalan, R. y Lakshmanaperumalsamy, P. 2019. An Overview of Phytochemical and pharmacological potentials of Punica granatum L. Pharmacognosy Journal. 11.

Jiao, Y., Hua, D., Huang, D., Zhang, Q. y Yan, C. 2018. Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food and Function. 9: 3997-4007.

Jing, Y., Huang, L., Lv, W., Tong, H., Song, L., Hu, X. y Yu, R. 2014. Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity. Journal of Agricultural and Food Chemistry. 62: 902-911.

Joseph, M.M., Aravind, S.R., Varghese, S., Mini, S. y Sreelekha, T.T. 2012. Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Molecular Medicine Reports. 5: 489-496.

Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S.A., Afridi, S. y Shinwari, Z.K. 2020. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 10: 47.

Klosterhoff, R.R., Kanazawa, L. K., Furlanetto, A. L., Peixoto, J.V., Corso, C.R., Adami, E.R., Iacomini, M., Rosalvo, T.H., Fogaça, A.A., Cadena Silva, M.S.C., Andreatini, R. y Cordeiro, L. M. 2018. Antifatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata). International Journal of Biological Macromolecules, 109: 1147-1153.

Li, J., Niu, D., Zhang, Y. y Zeng, X.A. 2020. Physicochemical properties, antioxidant and antiproliferative activities of polysaccharides from Morinda citrifolia L. (Noni) based on different extraction methods. International Journal of Biological Macromolecules. 150: 114-121.

Li, J., Wang, Y., Huang, J., Xu, X. y Xiang, C. 2010. Characterization of antioxidant polysaccharides in bitter gourd (Momordica charantia L.) cultivars. Journal of Food Agriculture and Environment. 8: 117-120.

Lim, T.K. 2012. Passiflora edulis. En: Edible Medicinal and Non-Medicinal Plants. pp 147-165. Springer, Dordrecht.

Lin, H.C. y Lin, J.Y. 2020. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. International Journal of Biological Macromolecules. 154: 511-520.

Liu, X., Luo, Y., Zha, C., Zhou, S., Liu, L. y and Zhao, L. 2015. Rheological properties of polysaccharides from longan (Dimocarpus longan Lour) fruit. International Journal of Polymer Science, 2015.

Marić, M., Grassino, A.N., Zhu, Z., Barba, F.J., Brnčić, M. y Brnčić, S.R. 2018. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound, microwaves, and enzyme-assisted extraction. Trends in Food Science and Technology. 76: 28-37.

Minzanova, S.T., Mironov, V.F., Arkhipova, D.M., Khabibullina, A.V., Mironova, L.G., Zakirova, Y.M. y Milyukov, V.A. 2018. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers. 10: 1407.

de Oliveira, M.D.S. y Schwartz, G. 2018. Açaí—Euterpe oleracea. En Exotic Fruits Reference Guide. Rodrigues, S., Silva, E., de Brito, E. (ed.), pp. 1-5. Academic Press, Cambridge, UK.

Prakash, A. y Baskaran, R. 2018. Acerola, an untapped functional superfruit: a review on latest frontiers. Journal of Food Science and Technology. 55: 3373-3384.

Qian, J. Y., Bai, Y. Y., Tang, J. y Chen, W. 2015. Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation. LWT-Food Science and Technology. 64: 104-111.

Rong, Y., Yang, R., Yang, Y., Wen, Y., Liu, S., Li, C., Hu, Z., Cheng, X. y Li, W. 2019. Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydrate Polymers. 213: 247-256.

Silva, D.C., Freitas, A.L.P., Barros, F.C.N., Lins, K.O., Alves, A.P.N., Alencar, N. M., de Figueiredo, I.S.T., Pessoa, C., de Moraes, M.O., Costa-Lotufo, V., Judith P.A., Maciel, J.S, de Paula y de Paula, R.C. 2012. Polysaccharide isolated from Passiflora edulis: Characterization and antitumor properties. Carbohydrate Polymers. 87: 139-145.

Silva, R.O., Damasceno, S.R., Brito, T.V., Dias, J.M., Fontenele, A.M., Braúna, I.S., Júnior, J.S.C., Maciel, J.S., de Paula, R.C.M., Ribeiro, R., Souza, M.H.L.P., Freitas, A.L., Medeiros, J-V. R., Silva, D.C.y Barbosa, A.L. 2015. Polysaccharide fraction isolated from Passiflora edulis inhibits the inflammatory response and the oxidative stress in mice. Journal of Pharmacy and Pharmacology. 67: 1017-1027.

Soni, R. y Agrawal, S. 2017. Litchi chinensis: taxonomy, botany and its cultivars. En Lychee Disease Management. M. Kumar, V. Kumar, N. Bhalla-Sarin, A. Varma (eds) pp. 191-215. Springer, Singapore.

Sousa, S.G., Oliveira, L.A., de Aguiar Magalhães, D., de Brito, T.V., Batista, J.A., Pereira, C.M.C., de Souza Costa, M., Raposo Mazulo, J.C., de Carvalho Filgueiras, M., Pereira Vasconselos D.F., Alves da Silva, D., Nogueira Barros, F.C., Sombra, V.G., Ponte, A. y dos Reis Barbosa, A.L. 2018. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydrate Polymers. 197: 515-523.

Wang, Y., Yang, Z. y Wei, X. 2012. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra-filtration. International Journal of Biological Macromolecules. 50: 558-564.

Wang, J., Hu, S., Nie, S., Yu, Q. y Xie, M. 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016.

Wasser S.P. 2020. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology. 60: 258-274.

Wu, J., Xu, Y., Liu, X., Chen, M., Zhu, B., Wang, H., Shi, S., Qin, L. y Wang, S. 2020. Isolation and structural characterization of a non-competitive α-glucosidase inhibitory polysaccharide from the seeds of Litchi chinensis Sonn. International Journal of Biological Macromolecules. 154: 1105-1115.

Yi, Y., Zhang, M. W., Liao, S. T., Zhang, R.F., Deng, Y.Y., Wei, Z.C., Tang, X.J., y Zhang, Y. 2012. Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydrate Polymers. 87: 636-643.Yan-Hang, W. y Ke-Wu, Z. 2019. Natural products as a crucial source of anti-inflammatory drugs: recent trends and advancements. Traditional Medicine Research. 4:257.

Yin, M., Zhang, Y. y Li, H. 2019. Advances in research on immunoregulation of macrophages by plant polysaccharides. Frontiers in Immunology. 10: 145.

Yuan, Q., Fu, Y., Xiang, P.Y., Zhao, L., Wang, S.P., Zhang, Q., Liu, Y-T., Qin, W., Li, D-Q. y Wu, D.T. 2019. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. Royal Society of Chemistry Advances. 9: 35443-35451.

Yue, Y., Wu, S., Li, Z., Li, J., Li, X., Xiang, J. y Ding, H. 2015. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food and Function. 6: 2568-2577.

Xu, C., Lv, J., Lo, Y. M., Cui, S. W., Hu, X. y Fan, M. 2013. Effects of oat β-glucan on endurance exercise and its antifatigue properties in trained rats. Carbohydrate Polymers. 92: 1159-1165.

Zhang, Z., Kong, F., Ni, H., Mo, Z., Wan, J.B., Hua, D. y Yan, C. 2016. Structural characterization, α-glucosidase inhibitory and DPPH scavenging activities of polysaccharides from guava. Carbohydrate Polymers. 144: 106-114.

Zhao, Y., Yang, X., Ren, D., Wang, D. y Xuan, Y. 2014. Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice. Food and Function. 5: 1771-1778.

Zheng, S.Q., Jiang, F., Gao, H.Y. y Zheng, J.G. 2010. Preliminary observations on the antifatigue effects of longan (Dimocarpus longan Lour.) seed polysaccharides. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 24: 622-624.

Zhong, K., Wang, Q., He, Y. y He, X. 2010. Evaluation of radicals scavenging immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models. International Journal of Biological Macromolecules. 47: 356-360.

Downloads

Published

2021-10-20

How to Cite

Enríquez-Valencia, S. A., González Aguilar, G., & López-Martínez, L. X. . (2021). Frutas tropicales y subproductos como fuente potencial de polisacáridos bioactivos. Biotecnia, 23(3). https://doi.org/10.18633/biotecnia.v23i3.1450

Issue

Section

Research Articles

Metrics

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.