Chemical modifications of galactomannans: synthesis and structure-function analysis

Chemical modifications of galactomannans

Authors

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1883

Keywords:

Galactomannans, chemical modifications, esterification, carboxymethyl etherification, addition of functional groups

Abstract

Galactomannans (GM) are multifunctional polysaccharides made up of a β (1→4)-D-mannopyranose backbone with D-galactopyranose branches linked by α (1→6) glycosidic bonds. They are obtained from the endosperm of seeds of plants by different extraction methods. GM are natural products of carbon fixation through a series of large-scale biosynthetic pathways. The chemical modification of polysaccharides has been used as strategy to change structural characteristics and functional properties, as solubility, polarity, ionic charge, bioactivity, and others. Reported modifications of GM includes hydrolyzation, esterification, etherification, and addition of functional groups as sulphates or phosphates produced GM derivates with biological and technological application potential. Therefore, this review focuses on the synthetic routes and the analysis of the chemical structures of chemically modified GM.

Downloads

Download data is not yet available.

References

Al-Horani, R. A. y Desai, U. R. 2010. Chemical sulfation of small molecules-advances and challenges, Tetrahedron, 66(16), pp. 2907–2918. doi: 10.1016/j.tet.2010.02.015.

Alissandratos, A., Baudendistel, N., Flitsch, S. L., Hauer, B. y Halling, P. J. 2010. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC, BMC Biotechnology, 10, pp. 0–7. doi: 10.1186/1472-6750-10-82.

Ba, J., Gao, Y., Xu, Q. H. y Qin, M. H. 2012. Research development of modification of galactomannan gums from plant resources, Advanced Materials Research, 482–484, pp. 1628–1631. doi: 10.4028/www.scientific.net/AMR.482-484.1628.

BahramParvar, M., Tehrani, M. M. y Razavi, S. M. A. 2013. Effects of a novel stabilizer blend and presence of κ-carrageenan on some properties of vanilla ice cream during storage’, Food Bioscience, 3, pp. 10–18. doi: 10.1016/j.fbio.2013.05.001.

Biermann, C. J. 1989. Hydrolysis and other cleavage of glycosidic linkages. En: Analysis of Carbohydrates by GLC and MS. C.J Biermann y G.D McGinnis (ed.) pp. 27–42. CRC Press, Boca Raton.

Buriti, F. C., dos Santos, K. M., Sombra, V. G., Maciel, J. S., Teixeira Sá, D. M., Salles, H. O., Oliveira, G., de Paula, R. C., Feitosa, J. P., Monteiro Moreira, A. C., Moreira, R. A. y Egito, A. S. 2014. Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fibre, Food Hydrocolloids, 35, pp. 512–521. doi: 10.1016/j.foodhyd.2013.07.015.

Caputo, H. E., Straub, J. E. y Grinstaff, M. W. 2019. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides, Chemical Society Reviews, 48(8), pp. 2338–2365. doi: 10.1039/c7cs00593h.

Carter-Fox S., Li B., Xu D., y Edgar K. J. 2011. Regioselective esterification and etherification of cellulose: A review, Biomacromolecules, 12(6), pp. 1956–1972. doi: 10.1021/bm200260d.

Cerqueira, M. A., Souza, B. W., Simões, J., Teixeira, J. A., Domingues, M. R. M., Coimbra, M. A. y Vicente, A. A. 2011. Structural and thermal characterization of galactomannans from non-conventional sources, Carbohydrate Polymers, 83(1), pp. 179–185. doi: 10.1016/j.carbpol.2010.07.036.

Cerqueira, M. A., Pinheiro, A. C., Pastrana, L. M. and Vicente, A. A. 2019. Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds, Frontiers in Sustainable Food Systems, 3, pp. 1–8. doi: 10.3389/fsufs.2019.00017.

Chen, W., Chen, H., Guo, G., Huang, Y., Chen, C., Tsai, Y., Huang, K. y Yang, C. 2018. Locust bean gum galactomannan hydrolyzed by thermostable β-D-mannanase may reduce the secretion of pro-inflammatory factors and the release of granule constituents, International Journal of Biological Macromolecules, 114, pp. 181–186. doi: 10.1016/j.ijbiomac.2018.03.097.

Cheng, H. N. y Gu, Q. M. 2012. Enzyme-catalyzed modifications of polysaccharides and poly(ethylene glycol), Polymers, 4(2), pp. 1311–1330. doi: 10.3390/polym4021311.

Cumpstey, I. 2011. Chemical Modification of Polysaccharides, ISRN Organic Chemistry, 2013, pp. 383–406.

Dhull, S. B., Sandhu, K. S., Punia, S., Kaur, M., Chawla, P. and Malik, A. 2020. Functional, thermal and rheological behavior of fenugreek (Trigonella foenum–graecum L.) gums from different cultivars: A comparative study, International Journal of Biological Macromolecules, 159, pp. 406-414. doi: 10.1016/j.ijbiomac.2020.05.094.

Dodi C. y Popa, M. I. 2011. Carboxymethylation of guar gum: Synthesis and characterization, Cellulose Chemistry and Technology, 45(3–4), pp. 171–176.

Fidan, H., Stankov, S., Petkova, N., Petkova, Z., Iliev, A., Stoyanova, M., Ivanova, T., Zhelyazkov, N., Ibrahim, S., Stoyanova, A. y Ercisli, S. 2020. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds, Journal of Food Science and Technology, 57(7), pp. 2404–2413. doi: 10.1007/s13197-020-04274-z.

Gao, J. y Grady, B. P. 2018 Reaction Kinetics and Subsequent Rheology of Carboxymethyl Guar Gum Produced from Guar Splits, Industrial and Engineering Chemistry Research, 57(22), pp. 7345–7354. doi: 10.1021/acs.iecr.8b00782.

George, A., Shah, P. A. y Shrivastav, P. S. 2019. Guar gum: Versatile natural polymer for drug delivery applications, European Polymer Journal, 112, pp. 722–735. doi: 10.1016/j.eurpolymj.2018.10.042.

Geronço, M. S., da Silveira Ramos, I. F., da Silva Filho, E. C., dos Santos Rizzo, M., Ribeiro, A. B. y da Costa, M. P. 2021. Are Structurally Modified Galactomannan Derivatives Biologically Active?, Polysaccharides, 2(1), pp. 1–15. doi: 10.3390/polysaccharides2010001.

Gu, Q. M. y Cheng, H. N. 2005. Enzyme-Catalyzed Condensation Reactions for Polymer Modifications, (1), pp. 427–436. doi: 10.1021/bk-2005-0900.ch030.

Gupta, S. y Variyar, P. S. 2018. Guar Gum: A Versatile Polymer for the Food Industry, Biopolymers for Food Design. Elsevier Inc. doi: 10.1016/B978-0-12-811449-0.00012-8.

Hussain, M., Bakalis, S., Gouseti, O., Zahoor, T., Anjum, F. M. y Shahid, M. 2015. Dynamic and shear stress rheological properties of guar galactomannans and its hydrolyzed derivatives, International Journal of Biological Macromolecules, 72, pp. 687–691. doi: 10.1016/j.ijbiomac.2014.09.019.

Iqbal, D. N., Hussain, E. A., Ghani, A., Hassan, F., Bukhari, A., Iftikhar, S., Nazir, A., Ahmad, A. y Iqbal, M. 2020. Green and environmentally friendly techniques for enhanced physicochemical characteristics attributed to polysaccharides for industrial applications, Polish Journal of Environmental Studies, 29(5), pp. 3457–3466. doi: 10.15244/pjoes/111511.

Javidi, F., Razavi, S. M., Behrouzian, F. y Alghooneh, A. 2016. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low-fat ice cream, Food Hydrocolloids, 52, pp. 625–633. doi: 10.1016/j.foodhyd.2015.08.006.

Kanelli, M. y Topakas, E. 2017. Acylation of soluble polysaccharides in a biphasic system catalyzed by a CE2 acetyl esterase, Carbohydrate Polymers, 163, pp. 208–215. doi: 10.1016/j.carbpol.2017.01.057.

Kazachenko, A. S., Malyar, Y. N., Vasilyeva, N. Y., Bondarenko, G. N., Korolkova, I. V., Antonov, A. V., Karacharov, A. A., Fetisova, O. Y. y Skvortsova, G. P. 2022. «Green» synthesis and characterization of galactomannan sulfates obtained using sulfamic acid, Biomass Conversion and Biorefinery, 12(1): pp1-10. doi: 10.1007/s13399-020-00855-2.

Koschella, A., Fenn D., Illy N., y Heinze T. 2006 Regioselectively functionalized cellulose derivatives: A mini review, Macromolecular Symposia, 244, pp. 59–73. doi: 10.1002/masy.200651205.

Li, P., Wang, T., He, J., Jiang, J. y Lei, F. 2021. Synthesis, characterization, and selective dye adsorption by pH- and ion-sensitive polyelectrolyte galactomannan-based hydrogels, Carbohydrate Polymers, 264, p. 118009. doi: 10.1016/j.carbpol.2021.118009.

Liu, W., Gu, J., Huang, C., Lai, C., Ling, Z. y Yong, Q. 2021. Fabrication of hydrophobic and high-strength packaging films based on the esterification modification of galactomannan, International Journal of Biological Macromolecules, 167, pp. 1221–1229. doi: 10.1016/j.ijbiomac.2020.11.076.

Liu, Y., Lei, F., He, L., Xu, W. y Jiang, J. 2020. Comparative study on the monosaccharides of three typical galactomannans hydrolyzed by different methods, Industrial Crops and Products, 157, p. 112895. doi: 10.1016/j.indcrop.2020.112895.

Liyanage, S., Abidi, N., Auld, D. y Moussa, H. 2015. Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.), Industrial Crops and Products, 74, pp. 388–396. doi: 10.1016/j.indcrop.2015.05.013.

Lopes, N., Faccin-Galhardi, L. C., Espada, S. F., Pacheco, A. C., Ricardo, N. M. P. S., Linhares, R. E. C. y Nozawa, C. 2013. Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus, International Journal of Biological Macromolecules, 60, pp. 93–99. doi: 10.1016/j.ijbiomac.2013.05.015.

López-Franco, Y., Cervantes-Montaño, C., Martínez-Robinson, K., Lizardi-Mendoza, J. y Robles-Ozuna, L. 2013. Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.)’, Food hydrocolloids, 30(2), pp. 656–660. doi: 10.1016/j.foodhyd.2012.08.012.

López-Franco, Y. L., Toledo-Guillén, A. R., Lizardi-Mendoza, J. 2017. Biopolymers from mesquite tree (Prosopis spp). En: Advances in Physicochemical Properties of Biopolymers (Part 1). M. Masuelli y D. Renard (eds.), pp 273-294. https://doi.org/10.2174/9781681084534117010012.

Mendes-Marques, M. M., Maia-de Morais, S., Araújo-da Silva, A. R., Dutra-Borroso, N., Pontes-Filho, T. R., de Carvalho-Araújo, F. M., Pinto-Vieira, I. G., Malta-Lima, D., y Florindo-Guedes, M. 2015. Antiviral and Antioxidant Activities of Sulfated Galactomannans from Plants of Caatinga Biome, Evidence-based Complementary and Alternative Medicine, 2015, pp 1-8. doi: 10.1155/2015/591214.

Mudgil, D., Barak, S. y Khatkar, B. S. 2012. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum, International Journal of Biological Macromolecules, 50(4), pp. 1035–1039. doi: 10.1016/j.ijbiomac.2012.02.031.

Mudgil, D., Barak, S. y Khatkar, B. S. 2014. Guar gum: Processing, properties and food applications - A Review, Journal of Food Science and Technology, 51(3), pp. 409–418. doi: 10.1007/s13197-011-0522-x.

Muschin, T., Budragchaa, D., Kanamoto, T., Nakashima, H., Ichiyama, K., Yamamoto, N., Shuqin, H. y Yoshida, T. 2016. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities, International Journal of Biological Macromolecules, 89, pp. 415–420. doi: 10.1016/j.ijbiomac.2016.05.005.

Pauly, M. y Keegstra, K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels, Plant Journal, 54(4), pp. 559–568. doi: 10.1111/j.1365-313X.2008.03463.x.

Qin, X., Li, R., Zhu, S., Hu, J., Zeng, X., Zhang, X., Xu, H., Kong, W., Liang, J., Zhang, H., Zhang, J. y Wang, J. 2020. A comparative study of sulfated tara gum: RSM optimization and structural characterization, International Journal of Biological Macromolecules, 150, pp. 189–199. doi: 10.1016/j.ijbiomac.2020.02.031.

Rajan, A., Sudha, J. D. y Abraham, T. E. 2008. Enzymatic modification of cassava starch by fungal lipase, Industrial Crops and Products, 27(1), pp. 50–59. doi: 10.1016/j.indcrop.2007.07.003.

Richter, A. y Klemm, D. 2003. Regioselective sulfation of trimethylsilyl cellulose using different SO3-complexes, Cellulose, 10(2), pp. 133–138. doi: 10.1023/A:1024025127408.

Rodge, A. B., Sonkamble, S. M., Salve, R. V. y Hashmi, S. I. 2012. Effect of hydrocolloid (guar gum) incorporation on the quality characteristics of bread, Journal of Food Processing and Technology, 3(2), pp.136. doi: 10.4172/2157-7110.1000136

Sarkar, S. y Singhal, R. S. 2011. Esterification of guar gum hydrolysate and gum Arabic with n-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation, Carbohydrate Polymers, 86(4), pp. 1723–1731. doi: 10.1016/j.carbpol.2011.07.003.

Saurabh, C. K., Gupta, S., Bahadur, J., Mazumder, S., Variyar, P. S. y Sharma, A. 2013. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films, Carbohydrate Polymers, 98(2), pp. 1610–1617. doi: 10.1016/j.carbpol.2013.07.041.

Sharma, P., Sharma, S., Ramakrishna, G., Srivastava, H., y Gaikwad, K. 2022. A comprehensive review on leguminous galactomannans: structural analysis, functional properties, biosynthesis process and industrial applications, Critical Reviews in Food Science and Nutrition, 62(2), pp. 443-465. doi: 10.1080/10408398.2020.1819196.

Suflet, D. M., Chitanu, G. C. y Popa, V. I. 2006. Phosphorylation of polysaccharides: New results on synthesis and characterisation of phosphorylated cellulose, Reactive and Functional Polymers, 66(11), pp. 1240–1249. doi: 10.1016/j.reactfunctpolym.2006.03.006.

Tao, Y., Wang, T., Lai, C., Ling, Z., Zhou, Y. y Yong, Q. 2021. The in vitro and in vivo Antioxidant and Immunomodulatory Activity of Incomplete Degradation Products of Hemicellulosic Polysaccharide (Galactomannan) From Sesbania cannabina, Frontiers in Bioengineering and Biotechnology, 9:679558. doi: 10.3389/fbioe.2021.679558.

Torbica, A., Belović, M., Mastilović, J., Kevrešan, Ž., Pestorić, M., Škrobot, D. y Dapčević Hadnađev, T. 2016. Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace, Food and Bioproducts Processing, 98, pp. 299–309. doi: 10.1016/j.fbp.2016.02.007.

Verma, S., Rimpy y Ahuja, M. 2020. Carboxymethyl modification of Cassia obtusifolia galactomannan and its evaluation as sustained release carrier, International Journal of Biological Macromolecules, 164, pp. 3823–3834. doi: 10.1016/j.ijbiomac.2020.08.231.

Wang, J., Yang, T., Tian, J., Liu, W., Jing, F., Yao, J., Zhang, J. y Lei, Z. 2014. Optimization of reaction conditions by RSM and structure characterization of sulfated locust bean gum, Carbohydrate Polymers, 114, pp. 375–383. doi: 10.1016/j.carbpol.2014.08.035.

Wang, J., Yang, T., Tian, J., Zeng, T., Wang, X., Yao, J., Zhang, J. y Lei, Z. 2014. Synthesis and characterization of phosphorylated galactomannan: The effect of DS on solution conformation and antioxidant activities, Carbohydrate Polymers, 113, pp. 325–335. doi: 10.1016/j.carbpol.2014.07.028.

Wang, X., Zhang, Z., Yao, Q., Zhao, M. y Qi, H. 2013. Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity, Carbohydrate Polymers, 96(2), pp. 371–375. doi: 10.1016/j.carbpol.2013.04.029.

Wang, Z., Huang, T. y Yu, A. 2021. A carboxymethyl vegetable gum as a robust water -soluble binder for silicon anodes in lithium-ion batteries, Journal of Power Sources, 489, p. 229530. doi: 10.1016/j.jpowsour.2021.229530.

Wielinga, W. C. y Meyhall, A. G. 2009. Galactomannans. En: Handbook of Hydrocolloids: Second Edition, G. Phillips y P. Williams (eds.). pp. 228–251. eBook ISBN: 9781845695873; Hardcover ISBN: 9781845694142.

Wu, C., Liu, J., Tang, Y., Li, Y., Yan, Q. y Jiang, Z. 2019. Hepatoprotective potential of partially hydrolyzed guar gum against acute alcohol-induced liver injury in vitro and vivo, Nutrients, 11(5), pp. 1–17. doi: 10.3390/nu11050963.

Wu, Y., Ding, W., Jia, L. and He, Q. 2015. The rheological properties of tara gum (Caesalpinia spinosa), Food Chemistry, 168, pp. 366–371. doi: 10.1016/j.foodchem.2014.07.083.

Yang, K. y Wang, Y. J. 2003. Lipase-Catalyzed Cellulose Acetylation in Aqueous and Organic Media, Biotechnology Progress, 19(6), pp. 1664–1671. doi: 10.1021/bp0341388.

Yang, Z., Peng, H., Wang, W., y Liu, T. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites, Journal of Applied Polymer Science, 116(5), pp. 2658–2667. doi: 10.1002/app.

Zhou, Z., Zhang, W., Duan, J., Zhang, W., Sun, D. y Jiang, J. 2016. Enhancement of Gleditsia sinensis gum rheological properties with pressure cell treatment in semi-solid state, International Journal of Biological Macromolecules, 84, pp. 254–260. doi: 10.1016/j.ijbiomac.2015.12.061.

Graphical abstract

Additional Files

Published

2023-04-21

How to Cite

Gómez-Rodríguez, G. H. ., Lizardi-Mendoza, J., Argüelles-Monal, W. ., Álvarez-Bajo, O., & LÓPEZ FRANCO, Y. L. (2023). Chemical modifications of galactomannans: synthesis and structure-function analysis: Chemical modifications of galactomannans. Biotecnia, 25(2), 126–135. https://doi.org/10.18633/biotecnia.v25i2.1883

Issue

Section

Review articles

Metrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.